
Cloud Kitchen: Using Planning-based Composite AI
to Optimize Food Delivery Processes

Slavomír Švancár, Lukáš Chrpa, Filip Dvořák and Tomáš Balyo

Filuta AI, Inc., 1606 Headway Cir STE 9145, Austin, TX 78754, United States

Abstract. The global food delivery market provides many opportu-
nities for AI-based services that can improve the efficiency of feed-
ing the world. This paper presents the Cloud Kitchen platform as a
decision-making tool for restaurants with food delivery and a simu-
lator to evaluate the impact of the decisions. The platform contains
a Technology-Specific Bridge (TSB) that provides an interface for
communicating with restaurants or the simulator. TSB uses a plan-
ning domain model to represent decisions embedded in the Unified
Planning Framework (UPF). Decision-making, which concerns allo-
cating customers’ orders to vehicles and deciding in which order the
customers will be served (for each vehicle), is done via a Vehicle
Routing Problem with Time Windows (VRPTW), an efficient tool
for this problem. We show that decisions made by our platform can
improve customer satisfaction by reducing the number of delayed
deliveries using a real-world historical dataset.

1 Introduction
The global food delivery market accounted for $190 billion in 2022
and is forecasted to grow over $500 billion in 20321. Such a market
increase, accelerated by the recent COVID-19 pandemic, establishes
(online) food delivery as a new norm in society [2, 11]. This opens a
number of opportunities for AI-based services that can optimise the
food delivery process by reducing costs and improving customer sat-
isfaction. Apps such as UberEats™ involve courier services that can
collect and deliver orders from multiple restaurants [12] and hence
the problem they deal with can be modelled as a (dynamic) Pickup
and Delivery problem [10, 1].

In contrast to courier services (e.g. UberEats), we consider restau-
rants having their own food delivery. Benefits of having their own
food delivery include not paying provisions for third-party order
and delivery services and not relying only on apps or web services
(e.g. being able to accept orders by phone). Hence, the problem we
deal with in this paper concerns assigning food orders to vehicles
and providing routing for the vehicles, i.e., deciding in which or-
der the deliveries are made. Such a problem can be modelled as a
domain-independent planning problem [5], in PDDL (Planning Do-
main Definition Language) [3] which is currently the most estab-
lished language for specifying (domain-independent) planning tasks.
Therefore, a wide range of different planning engines as well as
tools for plan verification and plan execution monitoring evolved
around PDDL. A recent effort to unify these planning engines and
tools motivated the development of the Unified Planning Framework
(UPF) [9]. Although PDDL and UPF provide us a machinery for plan

1 https://www.precedenceresearch.com/online-food-delivery-market

verification, explanation, and monitoring, the performance of exist-
ing domain-independent planners is rather poor for the problem. It is
more effective to model our problem as a Vehicle Routing Problem
with Time Windows (VRPTW) [7], which is specifically designed for
it. Embedding VRPTW into the UPF [9] can keep both the efficiency
of solving (by VRPTW) and the explainability of solutions [4]. It can
be seen as a straightforward example of Composite AI [8], which
aims at an effective combination of different AI techniques for ad-
dressing a given problem, or, in the planning context, as an exam-
ple of Planning Modulo Theories [6]. Although we provide a rather
trivial example of a Composite AI approach, it can be seen that the
use of PDDL (a domain-independent language) and UPF (a domain-
independent tool) can provide a useful machinery for for plan moni-
toring and explanation while embedding VRPTW (a specific solver)
into it provides an efficient way to solve our problem.

This paper introduces Cloud Kitchen, a platform that provides a
decision-making tool for restaurants (or kitchens) with food delivery.
The platform is designed to run as a cloud service with a Technology-
Specific Bridge (TSB) serving as its interface. TSB uses a PDDL
model to represent decisions that are embedded into UPF. TSB
passes information about new orders and available vehicles into a
Decision-Making component, which formulates and solves VRPTW
tasks. Solutions are then passed back to TSB, which interprets them
as (PDDL) plans. Cloud Kitchen also includes a simulator that sim-
ulates decisions made on real historical datasets to demonstrate the
usefulness of the platform for potential customers (i.e., restaurants).
We empirically show on a historical dataset provided by our indus-
trial partner that the Cloud Kitchen platform can improve customer
satisfaction by considerably reducing the number of deliveries de-
layed by more than 10 minutes.

2 Vehicle Routing Problem with Time Windows

A Vehicle Routing Problem with Time Windows (VRPTW) T =
(V,C,G) consists of a set of vehicles V , a set of customers C, and
a graph G = (N,E) such that |N | = |C| + 2. By convention, we
denote the starting depot as n0 and the returning depot as nk+1 and
the location of a customer ci as ni (assuming that |C| = k). For each
edge (i, j) ∈ E, we denote by dist(i, j), resp. time(i, j), the dis-
tance between locations i and j, resp. the driving time between i and
j (including service time in j). Each vehicle v ∈ V has its capacity
qv and each customer ci ∈ C has its demand di (representing the
“size” of the delivery) and its time window [ai, bi] representing that
the delivery has to be made at time ai at the earliest (the delivering
vehicle might need to wait if it arrives earlier) and at time bi at the

Technology-Specific Bridge

Restaurants Simulator

Decision-Making Component

decisions
real-time

observations

decisions
historical

data

customers,
vehicles

data
plans

Figure 1. Architecture of the Cloud Kitchen platform

Algorithm 1 The high-level routine of the DM component
Require: Deadline extension step δ

1: while True do
2: Cnew ← GetNewOrders()
3: Vdisp ← GetDispatchedVehicles()
4: Vnew ← GetReturnedVehicles()
5: V ← (V \ Vdisp) ∪ Vnew

6: C ← (C \
⋃

v∈Vdisp
Cv) ∪ Cnew

7: G ← GraphUpdate(G, C)
8: delay ← 0
9: repeat

10: T ← (V,C,G)
11: τ ← SolveVRPTW(T, delay)
12: if τ is invalid then
13: delay ← delay + δ
14: end if
15: until τ is a valid solution of T
16: SendSolution(τ)
17: end while

latest. We can also specify a scheduling horizon [a0, bk+1] represent-
ing when a vehicle can leave the depot (a0) and the latest time the
vehicle returns to the depot (bk+1).

A solution τ of a VRPTW T is a set of triples (Cv, πv, tv)
for each v ∈ V such that C =

⋃
v∈V Cv , Cv ∩ Cv′ = ∅

(for all v, v′ ∈ V such that v ̸= v′), qv ≥
∑

ci∈Cv
di,

πv is a path ⟨nv0 , nv1 , . . . , nvj , nvj+1⟩ (Cv = {cv1 , . . . , cvj},
nv0 = n0, nvj+1 = nk+1), and tv , representing time of deliv-
ery, is defined on the set of nodes from πv such that tv(nv0) ≥
a0, max(avi , tv(nvi−1) + time(vi−1, vi)) ≤ tv(nvi) ≤ bvi
(1 ≤ i ≤ k + 1). Solutions can be optimised, e.g., for the to-
tal traveled distance, or the total travel time, i.e., by minimising∑

v∈V

∑j+1
i=1 dist(vi−1, vi), or

∑
v∈V tv(nvj+1), respectively.

For more details about VRPTW, the interested reader is referred to
the literature [7].

3 Cloud Kitchen Platform
In a nutshell, Cloud Kitchen is a platform that aims at improving
the efficiency of food delivery services in restaurants. Cloud Kitchen
also includes a simulator that can simulate the process of food or-
dering and delivery based on historical data, which can be used to
demonstrate the impact of the platform on the delivery business of
restaurants. The architecture of the Cloud Kitchen framework is de-

picted in Figure 1. The Technology-Specific Bridge provides an in-
terface to restaurants (the framework can serve multiple restaurants,
each restaurant individually) or a simulator from which it receives
real-time data (or historical data in the case of the simulator) about
vehicles and customers. It provides decisions, on a real-time basis,
that consist of information about which vehicle delivers food to what
customer and in which order. TSB then forwards the information
about new customer orders and about available and dispatched ve-
hicles to the Decision-Making (DM) component that computes the
routing plans.

3.1 Decision-Making Component

As mentioned above, the DM component deals with the problem of
assigning orders to the vehicles as well as planning the delivery paths
for them. Algorithm 1 summarizes the process. It initially monitors
for customer orders that are almost ready (in the next five minutes),
for orders that have been dispatched for delivery (i.e., vehicles with
these orders have left the restaurant), and for vehicles that are about
to return to the restaurant (in the next five minutes). Then, the set
of customers C and the set of vehicles V are updated. According to
the updated data about the customers and their locations, we update
the graph G, where time and dist functions (on the graph’s edges)
can be determined, for instance, by leveraging OSMNX, a library
of OpenStreetMaps™ (OSM). Note that we do not explicitly con-
sider vehicles’ capacity since the amount of orders that are delivered
never exceeds or even gets close to the capacity of a given vehicle.
Then, we construct a VRPTW task T = (V,C,G) while setting the
time windows [0, deadline(c)] for each c ∈ C, where deadline(c)
represents the deadline for the customer c. Deadlines are set by the
restaurant (our customer) according to its processes. We then pro-
ceed to solve T , initially trying to meet all the deadlines and, if the
task is not solved within a given time limit, we keep increasing the
deadline for all customers by δ until the VRPTW task is solved. Such
an approach was designed to guarantee that the delay is kept within
reasonable bounds for each customer (in contrast to optimising aver-
age delay, which might impose an intolerably large delay for some
customers).

The rationale behind considering orders that are not yet ready is
twofold. Firstly, it is useful to adjust for aspects such as the time
needed to physically group the orders and load them into a delivery
vehicle or the later arrival of drivers. Secondly, locations of delivery
for some later orders might be close to the delivery locations of ear-
lier orders which might allow more efficient routing. The five-minute
threshold is given by the restaurant (our customer) as it aligns with
its internal processes. Decisions about when the vehicle is to be dis-
patched with the orders are made by the respective restaurant. Of
course, by then all the orders have to be ready and the vehicle has to
be at the restaurant.

3.2 Technology-Specific Bridge

TSB, as mentioned before, can be understood as an interface between
the restaurants (or the simulator) and the DM component. To inter-
pret (and verify) the solutions of the VRPTW tasks (returned by the
DM component), we translate these solutions into sequential plans
that contain actions, specified in PDDL, that are then forwarded to
restaurants (or the simulator).

In particular, the PDDL model consists of six actions. Assigning
customers’ orders to the vehicles is done by actions assign-order,
which assigns an order to a specific delivery, and assign-delivery,

Figure 2. A screenshot of the recommender. On the left-hand side, the recommender shows the “grouped” deliveries (with not-yet-ready orders at the
bottom). On the right-hand side, the recommender depicts the delivery routes in maps.

DT DD TD PD P10D
1.08 1.09 0.67 0.90 0.61

Table 1. Average improvement of Cloud Kitchen against historical data
(measured by ratio to historical data). In particular, we consider total driven
time (DT), total driven distance (DD), total delay (TD), and the number of
orders delivered after the deadline (PD) or 10 minutes after the deadline

(P10D).

which assigns a delivery to a specific vehicle. Note that these two
actions correspond to a process in restaurants, where the finished or-
ders are initially grouped before being loaded into a vehicle for de-
livery. The delivery process starts with the dispatch-delivery action,
drive and deliver-order are for driving to the delivery location and
handing the delivery to the customer, and the finish-delivery action
represents that the driver returned to the restaurant. Again, these ac-
tions correspond to the processes that the restaurants implement for
the delivery process.

These plans are then validated in UPF [9]. Then, the current plans
are displayed in a recommender, which displays the groups of orders
and visualises the delivery routes on a map (Google Maps™), so that
the restaurant staff can make a decision about when the orders should
be loaded to a vehicle and dispatched for delivery (a screenshot of the
recommender is shown in Figure 2).

3.3 Simulator

The purpose of the simulator is to provide a realistic estimate of the
impact of the decisions of the Cloud Kitchen platform made on his-
torical data and visualize them to the potential customers (restaurants
with food delivery). The simulator tracks the status of the orders, i.e.,
when the order is received by the restaurant, when it is cooked, then
assigned for delivery, dispatched, en route, until it finally arrives to
the customer who collects it. Similarly, we can track the state of each
vehicle such as before delivering orders, the vehicle is ready (waiting
at the restaurant), then the orders are assigned and loaded into it, and,
after that, the vehicle goes to the customer to deliver the order, and
after it delivers all the orders, it comes back to the restaurant.

Implementation-wise, the simulator is built on top of a process-
based discrete event simulation framework named SimPy. The
framework provides a linear, dimensionless timeline and allows for
scheduling events to be executed at a specific time on this timeline.
Events can then be processed, chained, or simply observed. One sim-
ulator tick represents one minute of real-time.

As mentioned above, driving distances and driving times are taken
from OSM. To get a more realistic estimate of the actual driving time
(in traffic conditions as they were in historical data), we have to deter-
mine a factor by which we multiply the estimated driving times from
OSM. This is done by initially simulating the deliveries as they were
arranged in the historical data and then by dividing driving times
from the simulation by the driving time estimates from OSM.

Vehicle dispatching is automated such that if all orders in a batch
(allocated to a single vehicle) are ready and there is some vehicle

Figure 3. Comparison of the numbers of orders per day delivered later than 10 minutes (y-axis) in historical data and planned by the Cloud Kitchen platform.
Particular days are on the x-axis.

waiting at the restaurant, then the vehicle is dispatched with that
batch of orders.

The visual part contains an interactive map (based on Google
Maps) consisting of pinpoints at the locations of customers that also
indicate the time until the deadline and the current positions of the
vehicles. On the right-hand side, there is a sidebar that shows the
status of the orders.

4 Empirical Evaluation

To evaluate our Cloud Kitchen platform, we have simulated deci-
sions on the platform on a real historical dataset consisting of one
restaurant, nine vehicles, and more than 14000 customers (orders)
spanning 61 days. As a solver for the VRPTW tasks we used Google
OR Tools™, which we configured on the “path_cheapest_arc” op-
tion for the “first_solution_strategy”. The reason for considering the
“first_solution_strategy” is the need to operate near real-time. For
that reason, we have also set the timeout for the solver to 50 mil-
liseconds. Setting the “path_cheapest_arc” option was based on an
empirical evaluation on a subset of our dataset. Also, we have found
out that the VRPTW task has been solved within 30 milliseconds, or
not at all (within 30 seconds), so, to give some leeway, we used the
limit of 50 milliseconds per a VRPTW task. For the “deadline ex-
tension” loop (Lines 9–15 in Algorithm 1), we used a 1-second time
limit (to keep near real-time reasoning).

As mentioned above driving distances and driving times are de-
termined from OSM. To adjust for the conditions that were at the
time of the dataset, we initially simulated the deliveries as they were
arranged in the historical data and then we compared driving times
(from the simulation) against the driving time estimates from OSM.
From that comparison, we determined a factor (1.6666) by which
we multiplied all driving time estimates from OSM to provide re-
alistic estimates for our experiments. We would like to note that in
real-world scenarios we use HERE maps to provide current driving
time estimates for the recommender as HERE maps are more pre-
cise than OSM, however, the number of routing calls in the simulator
is about three orders of magnitude higher than in the (real-world)

recommender, which would make HERE maps usage in simulations
computationally expensive.

The results, summarized in Table 1, show that while driving time
and driving distance slightly increased (by 8% and 9%, respectively),
the total delay has decreased by about one third, and the number of
orders delivered later than 10 minutes after their deadline dropped
by almost 40%. To give a better perspective, we provide, in Figure 3,
day-by-day results comparing how many “later than 10 minutes after
deadline” orders were in the historical dataset and were generated
by the Cloud Kitchen platform, respectively. It can be seen that the
numbers were not worse and often much better than in the historical
dataset. There are two exceptions in days 12 and 50, where at least
one planning episode failed (did not generate any routing plan within
the time limit), and hence no results are shown in the simulator for
that day as we could not validate the whole plan (for the day). In
practice, if a planning episode fails, we can relax the deadlines to
provide (at least) some recommendation for the restaurant.

From the results, we can see that the Cloud Kitchen platform has
a strong potential to improve customer experience as it can consid-
erably reduce the delay in order delivery. It has been confirmed by
the restaurant (that provided us with the data) that orders delivered
later than 10 minutes after their due time incur additional costs as
the customers tend to ask for refunds and/or are less likely to order
again. Despite the slight increase in costs (increased driving time and
driving distance), minimising the delays beyond 10 minutes is hence
much more beneficial for the restaurants.

5 Conclusion

In this paper, we have introduced the Cloud Kitchen platform that
provides a decision-making tool for restaurants (or kitchens) with
food delivery. In particular, the platform provides recommendations
about which orders should be delivered together as well as providing
routing for the vehicles (i.e., in which order the deliveries should be
made). Such a problem can be modeled as VRPTW, which is tailored
to address it. On the other hand, PDDL plans are better explainable to
the restaurant staff who dispatch the orders as these plans are aligned

with the processes in the restaurant. Hence, we translate solutions
of VRPTW tasks into PDDL plans and leverage UPF to validate the
plans before they are displayed to the restaurant staff in the recom-
mender. The Cloud Kitchen platform also contains a simulator that
can simulate the decisions (made by the platform) on (real) historical
data. The purpose of the simulator is to show the advantages of using
the platform for potential customers (restaurants).

We have empirically evaluated our platform on a real historical
dataset, where we have minimized the number of delayed deliveries
and the total delay. Although, as we showed, such an optimization
might increase driving time and distance and thus incur additional
costs, the number of delayed orders, especially those delayed by
more than 10 minutes, dropped considerably. Hence, the platform has
the potential to improve customer satisfaction considerably, which
has more value to the businesses despite the (slightly) increased costs
of delivery (as confirmed by the restaurant).

In the future, we plan to extend our platform by considering differ-
ent types of vehicles (e.g., scooters), distinguishing between different
types of food (e.g., warm or cold food), and optimizing the process
of preparing food in the kitchens.

Acknowledgements
The work is co-funded by the AIPlan4EU project, which is funded
by the European Commission – H2020 research and innovation pro-
gramme under grant agreement No 101016442

References
[1] J. Cai, Q. Zhu, Q. Lin, L. Ma, J. Li, and Z. Ming. A survey of dy-

namic pickup and delivery problems. Neurocomputing, 554:126631,
2023. doi: 10.1016/J.NEUCOM.2023.126631. URL https://doi.org/10.
1016/j.neucom.2023.126631.

[2] L. T. Chai and D. N. C. Yat. Online food delivery services: Making food
delivery the new normal. Journal of Marketing advances and Practices,
1(1):62–77, 2019.

[3] M. Fox and D. Long. PDDL2.1: an extension to PDDL for expressing
temporal planning domains. J. Artif. Intell. Res. (JAIR), 20:61–124,
2003.

[4] M. Fox, D. Long, and D. Magazzeni. Explainable planning. arXiv
preprint arXiv:1709.10256, 2017.

[5] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

[6] P. Gregory, D. Long, M. Fox, and J. C. Beck. Planning modulo theo-
ries: Extending the planning paradigm. In Proceedings of the Twenty-
Second International Conference on Automated Planning and Schedul-
ing, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012, 2012.

[7] B. Kallehauge, J. Larsen, O. B. Madsen, and M. M. Solomon. Vehicle
routing problem with time windows. Springer, 2005.

[8] L. Martie, J. Rosenberg, V. Demers, G. Zhang, O. Bhardwaj, J. Henning,
A. Prasad, M. Stallone, J. Y. Lee, L. Yip, et al. Rapid development of
compositional ai. arXiv preprint arXiv:2302.05941, 2023.

[9] A. Rovetta, A. Trapasso, A. Valentini, A. Micheli, A. Bit-Monnot,
E. Tosello, E. Scala, F. Chiariello, G. Röger, I. Serina, J. Rothe,
L. Framba, L. Bonassi, R. Godet, S. H. S. S. Sadanandam, S. Goyal,
and U. Köckemann. Unified planning framework. https://github.com/
aiplan4eu/unified-planning, 2023. "Accessed: 2023-12-03".

[10] M. W. P. Savelsbergh and M. Sol. The general pickup and delivery
problem. Transp. Sci., 29(1):17–29, 1995. doi: 10.1287/TRSC.29.1.17.
URL https://doi.org/10.1287/trsc.29.1.17.

[11] A. Shankar, C. Jebarajakirthy, P. Nayal, H. I. Maseeh, A. Kumar, and
A. Sivapalan. Online food delivery: A systematic synthesis of litera-
ture and a framework development. International Journal of Hospitality
Management, 104:103240, 2022.

[12] Z. Steever, M. Karwan, and C. Murray. Dynamic courier routing
for a food delivery service. Computers & Operations Research, 107:
173–188, 2019. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.
2019.03.008. URL https://www.sciencedirect.com/science/article/pii/
S0305054819300681.

