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Abstract. Integrated AI systems can often be composed of a series
of black-box components. We propose a planning based approach
that takes a set of components, initially available models/data, and
set of goal models and automatically devices a plan that represents
an integrated AI system. This allows us to automatically adjust to
new components and changing requirements. Experimental evalua-
tion shows how our approach performs over a large number of in-
stances covering sets of over 100 components.

1 Introduction

Uses cases for AI often require the composition of multiple AI com-
ponents (models, algorithms) into a hybrid system to achieve their
goals. Systems such as AI Builder [15] allow to compose AI systems
from individual components in the form of graphs. Each component
may have multiple inputs and outputs and (partially) solves an AI
(or related) problem when called. However, a comprehensive library
of AI components would provide many choices for each problem and
different sequences of steps may lead to the same outcome but in very
different ways. For this reason, we would prefer to simply provide a
system’s initially available data, a set of available components, and
describe the output of the system in order to allow an AI algorithm
to take care of system composition for us.

Our approach transforms descriptions of available AI components
into planning operators which allows us to use classical planning sys-
tems to create a system. to achieve this, we limit ourselves to systems
described as Directed Acyclic Graphs (DAGs). Experimental evalu-
ation shows how our approach performs over a large number of in-
stances covering sets of over 100 components.

Our approach is implemented in the AI Domain Definition Lan-
guage (AIDDL) [9] 1 framework for integrative AI which allows to
model the composition problem, planning problem, and our exper-
iments in a common language and easily define translations where
needed.

The remainder of this paper is organized as follows. Section 6
discusses related work. Section 2 gives a brief background on auto-
mated planning. Section 3 introduced the problem of composing hy-
brid AI systems. Section 4 shows how the composition problem can
be turned into a planning problem. Section 5 presents preliminary re-
sults on randomly generated sets of components. Finally, Section 8
concludes the paper and discusses future work.
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1 The AI Domain Definition Language (aiddl.org)

2 Background
We use a state-variable-based notion of automated planning [2].
States and goals are sets of variable-value pairs x ← v where each
state variable x is assigned at most one value v. Operators define how
states can be changed. Each operator o = (name,P ,E) has a name,
a set of preconditions P and effects E . An operator is applicable to a
state s iff P ⊆ s. The state transition function γ applies an operator
o to a state s and yields the following state by replacing all variable
assignments that appear in the effects of o

γ(o, s) = (s \ {x← v|x← v′ ∈ Eo}) ∪ E

A plan π is a sequence of actions π = a1, . . . an that can be ap-
plied to a state s0 generating a sequence of states

si = γ(ai, si−1),

assuming Pi ⊆ si−1. A planning problem (so, g,O) is composed
of an initial state so, goal g, and a set of operators O. A plan π is
called a solution if g ⊆ sn and ∀i : ai ∈ O . In practice, operator
use parameters which allows to specify them as templates for many
possible instances.

Planning problems can be solved via state-space search [4] where
each node is a state s and each edge is an action a leading from a state
where the action is applicable to γ(a, s). State of the art planning
approaches rely on heuristics to inform which nodes are chosen next
and are often solved with greedy best-first search.

3 AI Orchestration Problem
In this section we define AI system composition as its own prob-
lem where we have to select and apply a set of components to trans-
form available inputs into desired outputs. This formulation provides
a common baseline that allows studying different approaches to solv-
ing the problem (different planning approaches or alternatives based
on constraint satisfaction [5] or Boolean satisfiability).

Let C be a set of components c = (name, I ,O , cond), where
name is a name, I and O are inputs and outputs respectively, and
cond is a set of constraints allowing to connect properties of inputs
and outputs. Each element in I and O is a tuple (x, P ) where x is a
variable identifying the associated message, and P is a set or required
properties for the inputs in I and asserted properties for the outputs in
O . Components may be applied to different combinations of inputs
and for each such combination, the outputs are considered different.
Properties are used to indicate types (e.g., planning problem), and ad-
ditional aspects (e.g., grounded, normalized). For the purpose of this
paper, we assume that properties are symbolic. Figure 1 shows two



example components. The first component is a grounder for planning
problems. It takes an input ?I with the property planning-problem
and produces an output ?O with the properties planning-problem and
ground. The second component is a forward search planner which
takes an input ?I with properties planning-problem and ground and
produces an output ?O with the properties plan and sequential. Both
components are expressed as AIDDL terms in form of tuples (...) of
key-value pairs (k : v), which follows our definition of components.

Figure 1. Two example components for grounding and solving planning
problems. ?I and ?O are input and output variables mapped to sets of

properties. The examples are written in AIDDL. The colons (:) indicate
key-value pairs.

(
name:planning-problem-grounder
inputs:{
(?I {planning-problem})

}
outputs:{
(?O {planning-problem ground})

}
)

(
name:forward-search-planner
inputs:{
(?I {planning-problem ground})

}
outputs:[
(?O {plan sequential})

]
)

To execute a component, a fitting source is supplied for all required
inputs in I . We assume that all messages are stored in a common
memory that can be read and written by components as needed. After
execution, all output messages are written into this memory so they
can be accessed by other components given their address.

The orchestration problem is a tuple (A,Ω,C ), where A =
(α, ∅,O , cond) is a component with no inputs providing initially
available messages (here, cond is used to assert initial facts such as
the source relations mentioned below), and Ω = (ω, I , ∅, cond) is a
component with no outputs describing the desired (goal) data (here,
cond is used as normal to express relations between the inputs and
conditions on source relations). C is a set of available components
as described above.

A solution Π = C ∗, a to the composition problem is a set of
selected components C ∗ and an assignment a : X → N containing
a mapping from all variables that appear in C ∗ to memory addresses
identified by an integer. For convenience, we write C∗

Π to indicate
C∗ where all variable appearances have been replaced by their slots
according the mapping a.

To express conditions in components, we define two relations that
allow us to track where data comes from. The input relation indicates
if some data x has been used to produce data y. The source relation
can be used to model sources in the initially available data and prop-
agate it when components are applied.

We define the input relation

InputOf (x, y) ⇐⇒ ∃(_,I ,O,_)∈C∗
Π
(x, _) ∈ I ∧ (y, _) ∈ O

to indicate that x was used as in input to compute y. The input re-
lation allows to add constraints between inputs and outputs (e.g., a
solution to a planning problem with specific properties, a decision
tree based on normalized data-set).

We also define the source relation as

Source(x, s)⇐ InputOf (x, y) ∧ Source(y, s).

We assume that this rule and the initial condition condA define all
source relations. The purpose of this is to allow us to track where data
comes from in order to clearly define the purpose of the system in Ω.
As an example, we may have multiple states and sets of planning
operators in a system and the source relation can be used constrain
which operators can be used together with which states.

An execution strategy for C∗
Π is an ordering of all its components

that guarantees that required data is available when a component is
called. Not every C ∗

Π can be executed. To see this consider the two
component system

(A, {(1, ∅)}, {(2, ∅)})
(B, {(2, ∅)}, {(1, ∅)})

where the components A and B each have one input and one output
without any conditions. A and B provide and require each others’
input and output which leads to a deadlock.

More generally, we can create a directed data dependency graph
(V,E) where the set of nodes is the set of memory addresses used
by C∗

Π. The set of edges E = {(x, y)|InputOf ((, x), y)} contains
one edge between input and output slots for each operator.

If (V,E) is acyclic, the corresponding solution can be executed
by executing each component following the topological ordering of
the slots. If (V,E) is cyclic, we consider that it can be executed if
we can order all slots in such a way that each slot is available with
the required properties when it is first used. For instance, if we add a
provider for slot 1 to the previous example we get the system

(A, {(1, ∅)}, {(2, ∅)})
(B, {(2, ∅)}, {(1, ∅)})
(C, ∅, {(1, ∅)})

which can be executed in the order C,A,B.
Our use of planning detailed in the following section avoids cycles,

but we will investigate cyclic extensions in the future because they
are relevant for many types of systems.

Given a composition problem (A,Ω,C ), we can filter out irrele-
vant components. To do this, we initialized the set of relevant compo-
nents with the ones in Ω. Then we repeatedly go through C and add
any component that can provide the inputs to a relevant component
as relevant. We stop when no new relevant components are found or
when all components are marked as relevant.

4 Orchestration as an AI Planning Problem
Our aim is to use the problem defined in the previous section to create
a planning problem whose solution will create a system C ∗

x and an
execution strategy for the system.

Our initial state will be created based on A, our goal state based
on Ω, and we create one operator for each component in C , as well
as some extra operators for propagating source relationships. A plan
will be a sequence of actions representing component executions that
require the data provided by A and produce the data required by Ω.



The signature of the operator is composed of its name (same as
component name) followed by one variable per input. We create a
precondition Property(?I, x) ← ⊤ for each required property of
each input to indicate that the input must satisfy all required proper-
ties. Conditions cond of the component are assumed compatible in
terms or representation and thus added directly.

Effects are created to assign properties to each output. Output slots
are uniquely determined by the given name of the component, index
of the output and the list of chosen input slots2. So for a component
named c with chosen inputs i1, i2, the second output would receive
slot o2 = (c, 2, [i1, i2]). This assumes that the same inputs will al-
ways generate the same outputs.

Figure 2 shows the operator created for the forward planning ser-
vice from Figure 1.

Figure 2. Planning operator created for the forward search planning
service (with a shortened name) shown in Figure 1. Note that the output slot

is a composition of the service name and a list of used inputs.

(name:(planning ?I)
preconditions:{
(property ?I planning-problem):true
(property ?I ground):true

}
effects:{
(property (planning [?I]) plan):true
(property (planning [?I]) sequential):true
(input-of ?I (forward-search-planning [?I]))

}
)

The goal includes one property for each required output. Goal slots
are created and available in the initial state to allow linking them to
outputs that achieve the desired properties. To achieve goals, we use
two additional operators commit-to-slot and add-property that allow
to add properties to goal slots.

Figure 3. Operator that allows to commit a single goal property to a free
goal slot in order to achieve a goal.

(
name:(commit-to-slot ?E_in ?Prop ?E_out)
preconditions:{

(is-free ?E_out):true
(property ?E_in ?Prop):true
(is-goal-property ?Prop):true

}
effects:{

(is-free ?E_out):false
(input-of ?E_in ?E_out):true
(property ?E_out ?Prop):true

}
)

The execution strategy for sequential plans is straight forward.
For each action that represents a component call, we execute the
corresponding component and store its outputs under the chosen

2 An alternative version that managed a pool of available slots performed
worse during planning. The reason could be that the output slots were re-
quired as part of the operator signature which increased the size of the set
of ground operators significantly.

Figure 4. Operator that allows to add further goal properties to a free goal
slot (only usable after commit-to-slot).

(
name:(add-property ?E_in ?Prop ?E_out)
preconditions:{

(input-of ?E_in ?E_out):true
(is-free ?E_out):false
(property ?E_in ?Prop):true
(is-goal-property ?Prop):true

}
effects:{

(is-free ?E_out):false
(property ?E_out ?Prop):true

}
)

slot names. Operators not representing components can simply be
skipped.

In many cases it might be possible to parallelize execution. This
can be achieved for sequential plans through de-ordering, or by rely-
ing on planning approaches that produce parallel or partially-ordered
plans.

5 Evaluation

5.1 Implementation

The approach is fully implemented in the AI Domain Definition Lan-
guage (AIDDL) for integrated AI systems which allows us to write
model components, planning problems, and to define experiments.

We compare two settings for a state-variable based forward heuris-
tic A* search with the (non-admissible) Fast Forward (FF) [6]. We
test w = 0.5 (considering Path Length PL) and heuristic value with
equal weight) and w = 1.0 (No Path Length (NPL)). In practice,
including path length may lead to less complex systems using fewer
components. Note however, that due to the way in which we generate
instances (see next section), plan length can actually not vary in our
experiments since it is determined by the number of layers.

The AIDDL framework integrates an experiment runner that al-
lows to specify configurations and changing parameters for random
generation, as well as target measures and approaches to be com-
pared. This makes it very easy to re-produce or extend our experi-
ments. Every generated instance, solutions, and all measured data are
stored. Figure 5 shows the experiment configuration. The base con-
figuration base-config is used to generate instances. It includes the
variable NL which is varied for each set of instances. The variables
entry defines possible values for each such variable. If multiple vari-
ables are present, a set for each combination of values will be created.
The entry num-instances defines how many instances are created for
each set.

5.2 Random Instance Generation

The instance generator creates random components in layers that rely
on the previous layer and produce data for the next layer. So a com-
ponent in layer n relies on data provided by components in layer
n − 1 and provides data for components in layer n + 1. We always
use a goal that requires an output from the last layer. This allows us
to control problem difficulty because the solution length depends on
the number of layers.



To generate an instance, we specify the number of layers, how
many properties and components exist on each layer, as well as the
minimum and maximum inputs and outputs for each component.
Overall we created 25 sets (different numbers of layers) with 20 in-
stance each. In this paper we stick to components with single inputs
and outputs. We can show that a component with n outputs can be re-
placed by n components with single outputs. In a similar way, com-
ponents with three inputs can be transformed into two components
with two inputs each (combining two inputs into an intermediate re-
sult). If we assume that components can have a memory that can
store previous inputs, we can reduce the number of inputs down with
the idea that the first call simply stores the result and the second call
takes its input together with the stored result.

Figure 5. AIDDL specification of the experiment.

rng-seed:1234
base-config:[

num-layers:?NL
num-properties-per-layer:5
min-components-per-layer:5
max-components-per-layer:7
min-inputs:1
max-inputs:1
min-outputs:1
max-outputs:1
num-goals:1

]
data-module:data
num-instances:20
instance-type:term
variables:[?NL:[1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19
20 21 22 23 24 25]]

variable-names:[NL]
measures:[time-solve time-init

nodes-seen nodes-opened
nodes-closed
num-ground-operators
num-components
num-relevant-components
plan-length]

5.3 Results

We measured the time to initialize and solve the search problem,
number of search nodes opened, closed, and seen, the number of
components, number of relevant components, the number of ground
operators, and the plan length. Here we report on the planning time,
number of components, and opened search nodes. The number of
opened search nodes gives a platform independent indicator of the
search complexity the other two node metrics (closed and seen) scale
in a similar way. Plan length depends on the number of layers be-
cause we need one action per layer in each problem.

The number of components gives an indication of the difficulty
of the problem, the planning times shows that problems are solved
within reasonable time frame, and the nodes opened give a machine
independent idea of the complexity of the search space.

In the following box plots, we indicate the median value, 25th and
75th percentile, as well as the minimum and maximum values.

Figure 6 shows how many (relevant) components were generated
for each instance set. According to our instance generation, this is
the main source of difficulty. We can see that the amount of relevant
components on average is reduced compared to the total number of
components, but the variability increases with the number of layers.

Figure 7 shows the planning time against the number of generated
layers. Figure 8 shows the number of nodes added to the open list of
the search. We can see that planning times stays below 100 seconds
even for 25 layers where the average number of relevant components
exceeds 100 which shows that the approach can scale to reasonably
sized systems.

6 Related Work
Web Service Composition (WCS) [11] takes as input a set of services,
a desired new service, and semantic knowledge in form of an ontol-
ogy that decides whether a chain of service calls is allowed. As a
result, WCS requires a complex reasoning step to verify if a com-
position is legal. Our approach avoids this by stating properties and
allowing the propagation of sources directly as part of planning op-
erators. While less expressive, a significant set of AI systems can
be expressed already in this way. [7] suggest a heuristic that consid-
ers semantic knowledge about services represented in an ontology to
improve the search for web-service compositions. GoalMorph [16]
transforms goals in case not all goals can be reached in a web-service
composition problem. The approach by [12] integrate description
logic reasoning into a planning algorithm.

Four shortcomings of heuristic search for web-service composi-
tion have been highlighted by [14]. Out of these four, parallel control
flow and creation of variables (here: slots) have been addressed in
Sections 3 and 4 respectively. Issues relating to uncertainty about the
initial state (here: Alpha) and goal (here: Ω) do not concern us, since
our approach does not look into the data. This makes our notion of
composition less general since we cannot branch depending on con-
crete outputs. On the other hand, we can use off-the-shelf planning
algorithms to compose systems.

Configuration Planning (CP) [13, 10] considers planning prob-
lems that depend on the availability of information (information de-
pendencies) and require certain information to be available (infor-
mation goals). There are some similarities between CP and our ap-
proach in that information is treated as available or not but its con-
tent is not considered. However, in CP the type of information is
sufficient whereas here we support more complex scenarios by sup-
porting properties of service inputs and outputs. This works well for
AI applications, where often types remain the same, but important
properties change. On the other hand, configuration planning may
benefit from temporal constraints (e.g., information availability dur-
ing a time interval) which are not relevant to the presented model of
AI system composition.

7 Ethical Considerations
Handcrafted AI systems may already include optimization functions
that reinforce social injustice. This problem may be amplified or be-
come harder to catch when such systems are automatically created.

We have to carefully consider under which circumstances we al-
low an AI system to be deployed automatically. If its decisions can
negatively impact people, careful vetting by domain experts must be
used as a safe-guard. Mixed-initiative and explainable planning ap-
proaches may provide useful in this regard. Automatically analyz-
ing plans that represent AI systems for potentially dangerous biases



Figure 6. Number of generated and relevant components for varying number of layers.

Figure 7. Planning times (logarithmic) vs number of layers.



Figure 8. Number of nodes added to the open list of the search (logarithmic) vs number of layers.

based on the components that it uses would also make an interesting
area for future research.

8 Conclusion & Future Work
We presented a planning-based approach for automatically building
AI systems from user input and constraints. This work is still a pro-
totype but early experiments show that it can compose reasonably
sized systems. As pointed out earlier, there are various limitations in
this approach due to the usage of classical planning (sequential plans,
no cycles) and we will investigate execution strategies that could ac-
count for deadlock-free loops.

In many cases there are multiple options for fulfilling the same
request. We plan to extend our representation to support preference-
based planning [3]. In some cases, we may also want to automatically
deploy a candidate system in order to evaluate it and find a good sys-
tem considering multiple criteria (e.g., number of parameters, per-
formance, computational resource requirements/costs). Hybrid plan-
ning approaches that include information about time and resources
could be interesting for time critical systems or systems that may
have to share computational resources such as GPUs. Finally, due to
the ethical considerations pointed out above, we would like to inves-
tigate integration with mixed-initiative [1] and explainable planning
[8] approaches where our approach is used together with a human
operator rather than fully autonomously. Practically, we intend to de-
ploy our approach on the AI Builder 3.
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