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Abstract. This paper investigates the potential of integrating visual
object states for developing methods addressing complex visual in-
telligence tasks such as Long-Term Action anticipation (LTAA) and
proposes that this should be achieved with the aid of a Neurosym-
bolic (NeSy) framework. We consider that this approach could offer
significant advancements in applications requiring nuanced under-
standing and anticipation of future scenarios and could serve as an
inspiration for the further development of Nesy methods exhibiting
Visual Intelligence.

1 Introduction

Neurosymbolic artificial intelligence (NeSy AI) has developed sig-
nificantly over the years, establishing itself as a major subfield of AI
[5]. Traditionally, AI’s neural and symbolic methods were consid-
ered to be in competition [4]. However, a recent surge in frameworks
that combine these methods has been observed [9], driven by criti-
cal advancements of the limitations in deep learning [18, 15]. This
interest continues even with the advancements made through scal-
ing up deep learning, such as with large language models (LLMs),
as researchers are highly motivated by the potential to leverage the
strengths of both neural learning and symbolic knowledge represen-
tations. This synergy is increasingly regarded as a viable line of re-
search toward achieving Artificial General Intelligence.

One of the primary challenges facing contemporary AI systems
is their ability to handle complex tasks that require Visual Intelli-
gence [6][19].

Notably, despite the fact that knowledge related to object states
provides valuable cues toward this direction, the incorporation of this
type of information within a NeSy framework has remained notably
underexplored. We consider that object states hold significant poten-
tial to enhance the understanding and interaction with dynamic en-
vironments and can provide crucial context that can deepen an AI
system’s semantic comprehension and predictive capabilities (See
Figure 1 for a characteristic example) and the integration of object
states within a NeSy framework could bridge the gap between ab-
stract symbolic reasoning and the fluidity of real-world neural per-
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ception, offering a more granular and accurate representation of real-
time data.

The central thesis of our work 1 is that integrating object states
within a NeSy framework is not only achievable but also greatly ad-
vantageous for improving the robustness and interpretability of var-
ious models tackling critical visual-based tasks. To illustrate this,
we focus on Long Term Action Anticipation (LTAA), which consti-
tutes a typical example of a problem where object state identification
provides crucial information. Currently, the few LTAA methods that
leverage knowledge about object states are exclusively data-driven
and therefore we consider that the potential of using object states
is under-explored. To support the above statement, we discuss the
shortcomings of current methodologies and elaborate on the advan-
tages that a NeSy approach exploiting knowledge related to object
states can offer. Finally, we delineate the basic features of a novel
NeSy framework that leverages object states.

2 The Problem

LTAA involves the prediction of future actions over long time-
horizons in the range of several minutes from initial visual sequences
in videos. This task is essential for applications where understand-
ing and reacting to potential future scenarios are critical, such as
autonomous driving, robotic assistants, and proactive healthcare sys-
tems. Unlike short-term prediction, which focuses on immediate next
actions, long-term anticipation looks further ahead, often several
minutes into the future. More formally: given a video sequence V
consisting of frames {v1, v2, . . . , vT }, where T is the total number
of frames, the objective is to predict a sequence of future actions A
that are likely to occur following the last observed frame vT . These
actions are represented as {aT+1, aT+2, . . . , aT+n}, with n indicat-
ing the number of future steps to be anticipated.
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Figure 1. Knowledge related to object states is crucial for complex visual tasks such as LTAA. Consider a scene consisting of a coffee machine, a bottle of
water, a package of coffee and a mug. The knowledge of the object classes allows the prediction of the activity, e.g. coffee preparation, but the knowledge of the
object states is what enables the anticipation of the exact actions that constitute the activity.

3 Challenges

The task of LTAA involves several significant challenges, the most
important of which are the following. Future relevant actions may be
sparse and separated by long intervals of irrelevant activities or in-
activity, making it difficult to pinpoint when significant actions will
occur. Moreover, as the anticipation window increases, the depen-
dency on a broader and more complex temporal context intensifies.
Understanding which past cues are relevant for predictions far into
the future requires sophisticated models that can integrate and rea-
son over long temporal spans. Likewise, the farther into the future
the prediction reaches, the higher the uncertainty. Multiple plausible
futures can stem from a single point, and determining the most likely
future action sequence can be highly ambiguous without extensive
contextual understanding. Finally, LTAA often requires the integra-
tion of multiple data types (e.g., video, audio, textual descriptions) to
accurately predict future actions, adding to the complexity of model
design and training.

4 Limitations of current approaches

Very few of the works addressing the LTAA problem are based on the
NeSY paradigm [2, 1, 11]. However, none of these methods utilizes
information pertaining to object states in any way. The vast majority
of the LTAA methods follows a data-driven approach (some notable
works include [14, 16, 7, 12, 3, 8, 13, 10, 17]). Although some of
these works use object-states related information this is being done
in a purely data-driven manner. Moreover, these methods suffer from
a number of important shortcomings.

Namely, due to their reliance on purely data-driven approaches
these methods struggle with the high dimensionality and variability
inherent in video data. Moreover, data-driven approaches rely heavily
on the availability of large, annotated datasets that adequately repre-
sent the diversity of possible scenarios. However, such datasets are
often scarce or biased. Furthermore, these methods typically require
substantial computational resources for training and inference. Ad-
ditionally, these purely statistical models often fail to capture the
causal relationships and complex interactions between objects and
humans in dynamic environments, They tend to predict future ac-
tions based on correlations observed in the training data, without a
genuine understanding of the underlying causal mechanisms, a lim-
itation becomes particularly evident in scenarios where contextual
understanding and reasoning about object states are crucial.

5 Leveraging Object States within a NeSy
Framework

Integrating symbolic reasoning with object states allows models to
apply logical rules and knowledge of object interactions to predict
future actions. This approach offers a rich contextual understanding
absent in purely data-driven systems, facilitating the interpretation
of complex scenarios and enabling predictions based on causal re-
lationships rather than mere correlations. Symbolic components en-
hance the system’s ability to reason about actions with minimal data
by leveraging predefined rules and extensive knowledge bases. This
capability is particularly beneficial in situations with limited or bi-
ased training data, enabling the model to generalize from fundamen-
tal object interaction principles. Object states provide clear environ-
mental information, reducing uncertainty in long-term predictions.
Neuro-symbolic frameworks incorporating object states offer signifi-
cant adaptability, allowing for the integration of new rules and knowl-
edge to accommodate novel or changing environments. This adapt-
ability is essential for applications requiring operation under diverse
conditions. Moreover, the use of object states enhances the explain-
ability of model predictions. Actions predicted based on clear, trace-
able rules related to changes in object states are more understand-
able and verifiable by users, fostering trust in the model’s outputs.
Additionally, object state information can direct the focus of video
processing, prioritizing sections with significant state changes. This
selective attention can reduce computational demands and increase
the efficiency of the model. Finally, leveraging object state changes
as additional features enables models to learn effectively from fewer
examples minimizing the need for large labeled datasets and reduc-
ing the risk of bias inherent in the training data.

6 Proposed Approach

We present the basic outline of a Nesy framework that leverages vi-
sual object states analysis. Overall, the proposed model comprises
three main components: a neural module, a symbolic module and a
reasoning engine. A sketch of the model along with the correspond-
ing information flow is shown in Figure 2.
Neural Component for Perception: The neural component encom-
passes the following modules: an object detector (OD), an object
tracker (OT), a Relation Detector (RD), a state classifier (SC) and
a action recognizer (AR). The OD and OT are responsible for clas-
sifying and tracking the instances of object classes across the video
respectively. The RD focuses on discerning the relationships between



Figure 2. A schema of the framework we are proposing.

Module Type of Input Type of Output Example Method/Network
Object Detector RGB Images Labels and Bounding

Boxes
YOLO, Faster R-CNN

Object Tracker RGB Images Object IDs SORT
Relation Detector RGB Images Interaction/ Objects Rela-

tionships Labels
Graph Convolutional Networks

State Classifier RGB Images State Labels ResNet, VGG
Action Recognizer RGB Images Action Labels I3D (Inflated 3D ConvNet)
Rules Component State Labels State Transitions Custom Rule-Based System
Temporal Logic Element State Transitions Temporal Constraints Temporal Logic Networks
Reasoning Engine All Outputs Predicted Actions Prolog, Answer Set Programming (ASP)

Table 1. Modules of the Pipeline in the Proposed Neuro-Symbolic Framework
different objects within the scene, capturing interactions that are crit-
ical for understanding the context. The SC is used to infer the current
states of the observed objects, which is vital for interpreting how
these states might influence the subsequent actions. Finally, the AR
module is responsible for recognizing the actions.
Symbolic Component for Structured Representation: The sym-
bolic component of the model consists of the following modules: a
Rules Component (RC) and a Temporal Logic Element (TLE). The
RC encompasses a set of rules that govern state transitions, object af-
fordances, and the pre-conditions and effects associated with various
actions. It systematically codifies how changes in object states and
interactions lead to different outcomes within the video context. The
TLE is equipped with specialized knowledge pertaining to the tem-
poral alignment and constraints related to the objects, their states,
and the resultant actions. This module ensures that the timing and se-
quence of events are accurately maintained and logically consistent
throughout the analysis.
Reasoning Engine: The reasoning engine functions within a logic
programming framework, designed to predict long-term actions by
leveraging the outputs from the symbolic component. This frame-
work systematically processes and interprets the symbolic represen-
tations of object interactions and state transitions, enabling it to antic-
ipate future activities by applying established logical rules and rela-
tionships. Through this integration, the engine effectively synthesizes
the insights gained from the symbolic component to forecast actions
that may occur in extended future scenarios.
Pipeline: The neural component initially processes the video se-
quences, with each of its specialized modules dedicated to specific
perceptual tasks. The outputs generated by these modules are then
forwarded to the symbolic component of the system. Based on these
inputs, specific rules within the RC are triggered depending on the
contextual data and object interactions identified. These activated
rules are subsequently integrated with the temporal information en-
capsulated in the TLE. The reasoning engine serves as the decision-
making core of the model, utilizing both the static and dynamic as-

pects of the inputs to generate predictions about future actions.
Functional Specifications of Pipeline Modules: In the following
we present a rudimentary specification concerning the inputs and
outputs of the different modules along with examples of available
methods and neural networks that can support the necessary func-
tionality ( a summary of the specification is shown in Table: 1.). The
OD module is to take RGB images as input and outputs labels and
bounding boxes to identify and localize objects within each frame.
For this module standard off-the-shelf networks such as YOLO or
Faster R-CNN could be utilized. The OT would take as input RGB
images and output unique IDs to objects across frames. A suitable
method that could be employed in this context is the SORT tracking
algorithm.

The RD module is to take as an input RGB images and produce la-
bels corresponding to interactions and relationships between objects
within the scene. A straight-forward way to achieve this is through
the use of Convolutional Networks (GCNs). The SC would take RGB
images as input and output state labels. Again the utilization of GC-
Nslike ResNet or VGG seems as the most apropriate choise.

The AR is to processes RGB images and generate action labels.
A network that could support is the Inflated 3D ConvNet (I3D). The
RC would be given as input state labels and generated predictions for
state transitions. This could be achieved by employing custom rule-
based systems to codify the logical rules governing state changes
and object interactions. The TLE is to take the previous state tran-
sitions and output temporal constraints. For this task utilizing Tem-
poral Logic Networks seems as the most suitable option. Finally, the
RE would synthesize all the previous outputs, including labels, state
transitions, and temporal constraints, in order to produce predictions
for future actions. Logic programming frameworks such as Prolog or
Answer Set Programming (ASP) support this functionality and ap-
pear as the most appropriate options.



7 Conclusion
This paper investigates the potential of integrating visual object states
into a NeSy framework in the context of complex Visual Intelligence
Tasks such as LTAA. By bridging the gap between symbolic rea-
soning and neural perception of real-world dynamics, the proposed
NeSy framework aims to provide a more granular and accurate rep-
resentation of environments and considerably improve the predictive
capabilities. We hope that this study will serve as an initial step to-
wards uncovering the potential offered by this approach.
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