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Abstract. Microplastics, formed by the breakdown of non-
biodegradable plastic, pose a significant threat to aquatic ecosys-
tems. To address this, accurate methods for quantifying microplas-
tic concentrations are necessary for informing policy and prosecut-
ing polluters. Current detection methods, however, require expensive
equipment and are often unreliable. We propose a new, cost-effective
methodology that leverages depth-from-focus methodologies to per-
form 3D analysis of microplastics. 3D analysis will provide more ac-
curate measures of concentration than existing count-based method-
ologies. Additionally, qualitative analysis of the data can provide
deeper insights into the physical and biological mechanisms behind
microplastic-driven ecosystem damage.

1 Introduction

Microplastic (defined as water-insoluble, solid polymer particles that
are ≤5mm in size [4]) pollution has become an increasingly alarming
issue. The number of microplastics in aquatic ecosystems is concern-
ing: there are between 82 and 358 trillion microplastics in the world’s
oceans, weighing between 1.1 and 4.9 million tons.[5].

Microplastics (MP) have significant impacts on marine ecosys-
tems. According to Lee et al [12], "Microplastics ... move easily
through the food chain and persist in the environment". Ingestion of
MPs results in "physical and mechanical harm to marine organisms",
causing "abnormalities in internal organs" and malnutrition due to
"microplastic accumulation". Even exposure to MPs can cause harm:
MPs "attach to the surface of skin, crust and ectoderm"[3] of small
marine organisms.

To combat this, we present a novel method for cost-effective
and automated analysis of MPs in freshwater ecosystems. We im-
prove the accuracy and quality of existing microplastics quantifi-
cation methods by using depth-from-focus techniques to create 3D
models of MPs.

Additionally, accurate 3D models of MPs can give insight into spe-
cific effects of MPs on ecosystems. For example, Ward et al. [18] find
that "the extent of MP transport and deposition varied significantly
by shape". Furthermore, they even find that "accurately modelling the
shape of ... microplastic transport is crucial to determining the range
and amount of deposition globally". The shape of MPs is also signif-
icant in biological processes: according to Han et al. [9], "Nonspher-
ical particles ... cylindrical polymer brushes ... and wirelike objects
... each [have] a unique influence on the cell".
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2 Related Work

2.1 Microplastic Quantification

Most forms of MP quantification are done by counting the num-
ber of MPs. However, this methodology is actually ineffective in
accurately quantifying MP concentrations. For example, MPs that
are more prone to breakdown may be mistakenly identified as be-
ing more prevalent. This could lead to ineffective policy and mitiga-
tion efforts, as true sources of MP pollution are not properly dealt
with. Thus, measures like volume (which can be measured through
3D analysis) are necessary for a more accurate and effective assess-
ment of MP pollution.

2.2 Raman Spectroscopy

Raman spectroscopy [1] is based on the scattering of light, where a
small fraction of the light interacts with the molecular vibrations of
the sample, causing a shift in the energy of the scattered light. This
shift, known as the Raman shift, provides a distinct spectrum that
can be used to identify physical and chemical properties of the given
substance. Although Raman spectroscopy is a popular technique in
MP research, Raman spectrometers are expensive and require spe-
cialist knowledge to operate. Our automated approach, using afford-
able hardware, offers a viable alternative for MP research.

2.3 Mathematical Model

Barchiesi et al. [2] propose a model to estimate surface area and vol-
ume from 2D images: the model assumes a best-fit ellipse to estimate
the volume of MPs. Given the major axis (M ) and minor axis (m) of
the best fit ellipse, Barchiesi et al formulate the estimated volume as
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where Cf is a proposed measure to account for surface irregular-
ity. We believe the proposed model is insufficiently expressive to be
accurate: given the wide variety of MP morphologies (e.g. fragment,
fiber and bead), the assumption that a best fit ellipse is appropriate
is unfounded. Thus, predictions made by the model cannot be ef-
fectively used to quantify the MP pollution or qualify environmental
effects of individual MPs.



Figure 1: Images taken during the development of the focus-actuation
system

3 Methodology
Our methodology consists of three main phases: segmentation, clas-
sification and 3D reconstruction. To collect the data necessary for in-
ference, we built a microscope with an electronically actuated focus
mechanism (Figure ??). We designed a custom toothed translation
screw to convert the rotary motion of the 12V stepper motor to linear
motion of the objective lens. This component was created via resin
3D printing. The motor is controlled by an Arduino UNO, running
the power input through a 12V relay.

3.1 Segmentation

Figure 2: The classification pipeline takes images taken by the micro-
scopes and identifies regions with microplastics.

To accurately reconstruct of objects within the scenes, the objects
must first be identified. This is done with methodology proposed by
Felzenszwalb et al. in "Efficient Graph-Based Image Segmentation"
(EGBIS) [6]. EGBIS represents the image as a graph G = (V,E),
where each node vi ∈ V represents a pixel and each edge (vi, vj) ∈
E represents similarity between pixels vi and vj .

The benefits of this algorithm over alternatives (e.g. YOLO [15]
and CNN-based region proposal networks [17]) are twofold.

EGBIS is significantly more efficient than YOLO and CNN-based
region proposal networks (RPN). The unparameterised segmentation
algorithm runs in O(mlogm) time and runs in a fraction of a second
for the 640x480 images taken by the microscope camera. YOLO and
CNN-based RPNs are significantly less efficient in our application:
this is as the collection of images is staggered, which means optimi-
sations of the algorithm for GPUs are not used.

EGBIS is much more accurate than neural-network-based ap-
proaches. YOLO [15] and CNN-based RPNs [17] are trained on data
that do not contain microscopy images. This means that the mod-
els are often unable to identify objects in the scene, likely as colors
and structures encountered will be unfamiliar. The EGBIS algorithm

does not take semantic information into account, and is thus able to
identify objects despite their irregular geometries. The uniform back-
ground colour and distinct separation between adjacent particles fur-
ther improve the performance of the algorithm.

Figure 3: Example images segmented with the EGBIS algorithm. The
algorithm is clearly able to identify objects in the image, regardless
of the irregular structure (e.g. the fibrous structure in the bottom right
image)

Figure 4: Microplastic Images from the ASU dataset

We perform segmentation on the model M = R(If , k). The func-
tion R(x, k) denotes the EGBIS algorithm given the focus-stacked
image If and parameter k. k parameterises the scale of objects pre-
ferred within the final segmentation (i.e. a large k will result in larger
segmented objects and a smaller k will result in smaller segmented
objects). The segmentation mask M (as seen in Figure ??) is defined
as such: the entry Mi,j denotes the object that the pixel If (i, j) is
a part of. It therefore takes a value between 1 and n, where n is the
number of objects.

4 Classification

During the classification stage, our goal is to distinguish microplas-
tics from a mixed sample containing both microplastics and non-
microplastics, and to accurately classify the identified microplas-
tics according to their morphology. Due to the limited availability
of light-microscopy microplastic data, we must use few-shot learn-
ing. For our purposes, we employ a prototypical network-based
methodology[16]. As proposed by Snell et al., we learn a mapping
f(x) from a given input image xi to a point ck ∈ R in embedding
space. We learn the parameters of f(x) by minimising the loss func-
tion.

L =
∑

(xq,yq)∈Q

∥∥f(xq)− cyq
∥∥2 (2)

where (xq, yq) is an input-label pair within the query set (the im-
ages that we aim to classify) and cyq is the corresponding prototype
for class yq .



We initialise our mapping f(x) with a pretrained deep residual
network [10] trained on the ImageNet dataset. We then convert the
model to a mapping by replacing the final classification layer with a
256-node dense layer. Therefore, the output of the model will be the
mapped point in embedding space f(x) ∈ R256.

We fine-tune the model on the ASU MP dataset [7]. To increase the
size of the MP dataset we augment the data by performing random
blurring and flipping of the images. This is well motivated as the
classification of a MP should be invariant to the focus and orientation
of the image.

5 3D reconstruction
From classification, we identify the regions where a MP is present
within the image. With this information, we can then continue to
construct a 3D model of individual MPs. To achieve this, we employ
the depth-from-focus method.

We attempted both stereo depth estimation and monocular depth
estimation but found that both methods were inadequate. For stereo
depth estimation, the restrictively small field of view of MPs
makes recording images with significant parallax difficult. Similarly,
monocular depth estimation is speculative when generating depth
maps and is often unable to recover fine details of the object.

Extracting depth information from depth-from-focus (DFF) is sig-
nificantly less popular than other means due to "low precision hard-
ware" and "imprecise mathematical methods" [19]. To make DFF an
appropriate methodology for this purpose, we fix both of these limi-
tations.

On the hardware front, our implemented solution can perform pre-
cise changes in magnification. Coupled with effective calibration, our
hardware is far more effective than those used in previous imple-
mentations of DFF-based depth estimation. On the software front,
we employ state-of-the-art research on blur detection to effectively
extract fine details of the MPs. Specifically, we utilise Golestaneh
et al.’s methodology [8] for applying blur detection on the images
captured by the microscope. This is far more effective than using tra-
ditional methods (e.g. Laplacian-based methodologies) as fine details
are preserved.

We set up a camera with real coordinates C (taking the centre of
the sample as (0, 0, 0)) and take images with incrementing magni-
fication and automatically disqualify images with excessively high
blurriness. We also record sensor position s (the distance of the
DSLR sensor from the objective lens) for each image.

Figure 5: Example of generated focus maps of the same object and
different magnifications.

For each of the images, we generate a focus map (Figure ??) F,
where Fi,j represents the focus of the pixel at (i, j). We aim to com-
bine the focus maps generated to obtain a depth map D for which
the entry at Di,j denotes the distance along the ray connecting the
sample and the camera C.

The first step of this process involves aligning each of the gener-
ated focus maps, such that the focus maps can be overlaid to create a

cohesive depth map. This is done using the SIFT methodology [13].
Suppose we wish to align F1 (the focus map corresponding to I1)
to F2 (the focus map corresponding to I2): we first generate two
sets of keypoints (k1 and k2) from images I1 and I2 using the SIFT
methodology.

We then use a FLANN (Fast Library for Approximate Nearest
Neighbors) [14] based matcher to find neighbors in k2 for keypoints
in k1. We can then estimate a homography matrix H which best de-
scribes the mapping of the keypoints. By applying the homography
matrix H on F1, we can align depth map F2 to F2. In practice, this
process is highly accurate. This is as zooming and camera and move-
ment are very slight, making the nearest neighbor identification very
accurate.

We then use this information to calculate the desired depth map
D. Using the thin-lens formula, we can trivially determine the depth
of each point.

Di,j =
s∗f

s∗ − f
(3)

where f is the focal length of the camera and s∗ is the sensor position
that achieves maximal focus. We merge point clouds between images
and With the generated point cloud, we apply Delaunay triangulation
[11] to estimate the volume of the point cloud.

6 Results
Example meshes (Figure 6b) were generated from MPs (Figure 6c)
found during manual sample collection at the River Itchen. Negative
data (i.e. microscopy images of non-MPs) included images sourced
from the IDR database and manually collected samples from the
River Itchen.

Method Dim Classify (%) Identify (%) FP (%) FN(%)

Baseline 128 53.4 35.7 33.9 30.4
Trained 128 62.3 40.6 26.5 32.9
Baseline 256 91.0 91.9 5.4 2.7
Trained 256 94.6 96.3 2.4 1.3
Baseline 512 87.4 89.8 5.7 5.5
Trained 512 93.2 90.1 6.3 3.6

Table 1: Performance of the classification model. "FP" and "FN" are
abbreviations of false positive and false negative rates for the identi-
fication of MPs. "Dim" refers to the output dimension of the feature
extractor.

7 Discussion
Our classification model achieves highest accuracy (94.6% accuracy
for MP classification, 96.3% accuracy on identification) when using
a feature extractor with 256-dimensional output vectors. With 512-
dimensional and 128-dimensional feature vectors, the accuracy de-
creases. There is likely not enough data for the feature extractor with
512-dimensional feature vectors to converge and the generated 128-
dimensional feature vectors will not contain enough information to
allow for accurate classification.

False positive rates seem consistently higher than false negative
(Table 1): this is likely due to class imbalance within the dataset as
well as similar characteristics between non-MPs and MPs particles.

The mesh generated by the model accurately reconstructs features
of the MP. For example, the distinctive ridge of the MP is preserved,
as well as the angularity of its structure. However, through the De-
launay triangulation performed to generate the mesh, some of the
structural information is lost. Nevertheless, we believe that the gener-
ated representation is significantly more accurate than that of existing
mathematical models.



(a) Generated focus maps of a microplastic

(b) Generated mesh from a microplastic

(c) Source images of a microplastic

(d) Contour generated from depth

Additionally, we were unable to perform 3D reconstruction of
bead and fibre type MPs as we were unable to find any samples of
bead and fibre MPs in the Itchen River.

8 Conclusion

Our work presents a novel computer-vision based approach to the
understudied field of MP reconstruction. Operating on low-cost hard-
ware, we adapted existing algorithms to effectively extract informa-
tion from low-resolution information. However, more work must be
done to test reconstruction for other MP morphologies, as well as
calibrate generated models to experimentally determined values.
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