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Abstract. Knowledge Graphs (KGs), with their intricate hierarchies
and semantic relationships, present unique challenges for graph rep-
resentation learning, necessitating tailored approaches to effectively
capture and encode their complex structures into useful numerical
representations. The fractal-like nature of these graphs, where pat-
terns repeat at various scales and complexities, requires specialized
algorithms that can adapt and learn from the multi-level structures
inherent in the data. This similarity to fractals requires methods that
preserve the recursive detail of knowledge graphs while facilitating
efficient learning and extraction of relational patterns. In this study,
we explore the integration of similarity group with attention mech-
anisms to represent knowledge graphs in complex spaces. In our
approach, SimE, we make use of the algebraic (bijection) and geo-
metric (similarity) properties of the similarity transformations to en-
hance the representation of self-similar fractals in KGs. We empiri-
cally validate the capability of providing representations of bijections
and similarities in benchmark KGs. We also conducted controlled ex-
periments that captured one-to-one, one-to-many, and many-to-many
relational patterns and studied the behavior of state-of-the-art models
including the proposed SimE model. Moreover, we created a set of
fractal-like testbeds to assess the subgraph similarity learning ability
of models. The observed results suggest that SimE captures the com-
plex geometric structures of KGs whose statements satisfy these al-
gebraic and geometric properties. In particular, SimE is competitive
with state-of-the-art KG embedding models and is able to achieve
high values of Hits@1. As a result, SimE is capable of effectively
predicting correct links and ranking them with the highest ranks.

∗ Corresponding Author. Email: kossi.amouzouvi@tu-dresden.de.
1 Equal contribution.

1 Introduction

Knowledge Graphs (KGs) continue to stand as an important pillar of
AI-based approaches by providing a source of structured and ver-
ifiable knowledge. However, KGs in their symbolic form are not
directly usable by most machine learning algorithms because these
algorithms require numerical input to perform computations. Sym-
bolic representations need to be converted into appropriate numerical
forms (e.g., vectors) to enable the application of statistical techniques
that can efficiently process and learn from the data [23, 24]. This ne-
cessitates the use of representation learning methods with an ability
to preserve most of the symbolic structure of the KG, including re-
lational and structural patterns. The objective of knowledge graph
representation learning is to accurately transform these characteris-
tics from the symbolic domain to a vector space. This is essential
for enhancing both the functionality and reliability of systems across
a variety of domains, including web search, recommender systems,
and automated reasoning [13, 14, 26, 30, 32]. However, the effec-
tiveness of these models is often limited due to the diverse struc-
tures present in KGs. A type of representation learning approaches
namely Knowledge Graph embedding (KGE) models gained atten-
tion in their geometrical and algebraic design, where the preserva-
tion power lies on. KGEs perform link prediction by embedding en-
tities and relations of a knowledge graph into a continuous vector
space, where it learns to predict missing relations based on the ob-
served geometric or semantic closeness of these embeddings. There
has been a long list of KGE models [12], each of which can preserve
a subset of structures including symmetry, composition, or hierar-
chies and tree-like structures. However, KGs encompass a variety of
other structural types that have not been extensively explored. For
instance, self-similar structures, which are analogous to Fractals in
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Figure 1: Figure 1a shows a triangle t with relationships hasSibling, hasPredecessor, hasSuccessor and with upperCorner(t), leftrCorner(t),
and rightCorner(t). Furthermore, figure 1a shows triangles T1, T2, T3, and the Sierpinski triangle is composed of these three triangles of the
same size. Figure 1b shows a Sierpinski KG (SGKG), of size 243. KGE models (e.g., TransE, ComplEx, RotE, AttE, and SimE) are utilized to
perform a prediction task of the missing links between two entities. The illustration above demonstrates that the state-of-the-art KGE models
were unable to capture the self-similar structures in fractals, while SimE outperforms and shows improved performance.
nature, frequently occur in domains such as biological, ecological,
familial-social, and linguistic KGs. These complex patterns, often
overlooked, offer significant potential for advancing our understand-
ing and representation of interconnected data. In this work, we inves-
tigate self-similar structures on the example of familial-social as well
as synthetic KGs comprising of fractals. We exclusively make use of
the algebraic properties (bijection) of the similarity transformations
to enhance the materialization of the properties represented in KGs.
Motivating Example. A fractal is a geometric structure that com-
prises self-similar geometric structures; Figure 1a illustrates Sierpin-
ski triangles, a particular type of fractals (a formal definition is in
Section 3). A fractal knowledge graph (KG) comprises nodes and
edges representing fractals. Specifically, Figure 1b illustrates a por-
tion of a Sierpinski Gasket KG (SGKG) with the size of 243 tri-
angles. The extracted sub-graph describes an entity in the SGKG
with relations, i.e., hasSibling, hasPredecessor, and hasSuccessor.
Additionally, the sub-graph represents two similar nodes connected
with sameAs relationship, resulting in Sierpinski triangles. In the
real world, KGs operate on Open World Assumption (OWA) for
the representation of knowledge, thus Figure 1b demonstrates miss-
ing information about a particular entity. For instance, completing
the missing relations between entities would be relating two enti-
ties, i.e., at_11663 and bt_11663 using relation hasSuccessor, which
represents the correct factual statement ⟨at_11663, hasSuccessor,
bt_116633⟩ that is the missing link in the exemplar KG, further, uti-
lized in the completion of KG.
Predicting the correct factual statement at ranking one is essential
because it directly assesses the accuracy of the model’s predictions,
which is crucial for tasks such as link prediction and KG comple-
tion. Figure 1b illustrates the state-of-art approaches that worked on
the mechanism of numerical learning methods (a.k.a., KGE models).
KGE models predict the missing links via the representation of KGs

in low-dimensional numerical vectors. Further, such latent vector is
utilized to perform the link prediction task, i.e., analyzing the already
known factual statements to deduce the missing ones. For instance,
the translation-distance model, i.e., TransE predicts the missing tail
at rank 14, whereas models working on complex hyperplane, i.e.,
ComplEx, and rotation mechanisms, i.e., RotE predicts the tail entity
at rank 3969 and 2 respectively. Consequently, these techniques may
not cover relevant knowledge in the neighborhood of an entity and
fail to consider the properties of fractals such as self-similarity and
bijection by randomly choosing facts.
In this paper, we present SimE, a KGE model that transforms the em-
bedding vectors of entities and their relationships using Euclidean
space to measure the plausibility of the triple. SimE is motivated by
the lack of exploitation of the numerical learning methods to capture
Sierpinski triangles. SimE utilizes the self-similar fractals to create
valid candidate triples for a given Link Prediction (LP) task. As il-
lustrated in the Figure 1b, SimE predicts the tail entity at rank 1,
outperforming the state-of-the-art KGE models that are unable to de-
tect the self-similar structures and bijections in the KGs. The exper-
imental study reveals the impact and key role of SimE in capturing
the self-similar structures of fractals, therefore increasing the perfor-
mance of LP tasks. Thus, we utilize Hits@1 to quantify the percent-
age of times the predicted top-ranked plausible entity aligned with
the actual relationship in the KG, as well as to report whenever the
predicted correct links are ranked with the highest ranking scores.

2 Related Work

KGE models can be classified into tensor decomposition models,
deep learning-based models, and geometric models based on
the interaction dynamics of their embeddings. Among those, the
geometric models can be further categorized based on the type



of geometric space they utilize, such as Euclidean, complex, or
hyperbolic spaces. In any of these embedding spaces, these models
employ geometric methods such as rotation, reflection, scaling,
and translation. In this work, we focus on geometric models, their
spaces, and methods for the preservation of self-similar structures.
Therefore, the rest of this section presents related work in terms of
pattern preservation with regard to the KGE model designs so far.

Relational Pattern Preservation. Geometric models regard re-
lations as geometric transformations between subject and object
entities. TransE [6], a pioneer KGE model encoded relations by
translations from subject entities to object entities in Euclidean
space. Although it remains one of the simple and better-performing
models, it has limitations in preserving certain multi-relational
structures. These limitations gave rise to new translation-based
models such as TransH [31], TransA [33], TransR [19]. In contrary
to normal straight line translation models, RotatE [28] uses the com-
plex products to rotate subject entities. Different from translation
models, rotation can preserve symmetric and antisymmetric patterns
well. It therefore, populates the Euclidean space by concentric
circles and achieves translation of subject entities on circles. Sub-
sequently, QuatE [35] extends the algebraic structure of RotatE to
a hypercomplex structure; relation-entity interaction is represented
by a quaternion product. DualE [8] uses dual-quaternion product to
simultaneously achieve rotation and translation of subject entities
by relations which yields in broader relational pattern preservation.
DualE and QuatE subsume RotatE, and moreover, they introduce a
non-commutative relation representation learning. These works fail
to preserve hierarchical and tree structures.

Structural Pattern Preservation. Recently, it has been shown that
hyperbolic geometry has the potential to facilitate learning over hier-
archical relational patterns. These models define and project relation
and entity embeddings onto relation-specific manifolds in a Poincaré
ball. A model named MuRP [1] encodes relations by Möbius ad-
dition and Möbius matrix-vector multiplication to transform entity
embeddings. The importance of using hyperbolic space is also as-
sessed in MuRP by comparing it against its reduced version, named
MuRE [1], which uses real addition and real matrix multiplication in
Euclidean space. Another KGE model named AttH [11] brings rota-
tion and reflection to the hyperbolic space in order to conjointly learn
relational and hierarchical patterns. A variant of AttH in Euclidean
space is also proposed dubbed AttE [11]. A recent work in geometry
interactions, GIE [9], extends AttH by considering extra patterns in
Euclidean and spherical space versions in the hyperbolic space. By
interactively learning the spatial structures in the three spaces, GIE
is able to simultaneously learn multiple types of structural patterns
including hierarchies. Another type of structural pattern, however
complex, is self-similar structure or fractal gasket subgraphs. Lars-
son et al., and Zhang et al. introduce the concept of relational fractal
embedding. Several studies [3, 22, 25] have applied the concept of
fractals in deep learning across networks. However, the preservation
of these structures in KGs is an unexplored problem, which is ad-
dressed in this proposed approach.

3 Background and Preliminaries

In this work, we perform knowledge graph representation learning
by exploiting graph-relations’ embedding with similarity transfor-
mations of complex numbers. In this section, we introduce the key
mathematical concepts that are used to define our model.

3.1 Similitude

In the complex plane, a similitude (also called similarity) is a bi-
jection defined from the complex plane onto itself, that scales dis-
tances between two points by a constant positive real number. That
is, if o and o′ are similar to s, and s′ by a similarity sim, then
∥o′ − o∥ = α∥s′ − s∥ where α > 0 is the scaling factor and
s, s′, o, o′ ∈ C. The couple (s, o) are analytical related by the com-
plex equation

o = a · s+ b = αeiθa · ŝ+ b (1)

where α = |a| and θa are the modulus and the angle of a, and ŝ is ei-
ther s or its complex conjugate s̄. a, b ∈ C define the similarity sim.
Their values confer different properties to the similarity. sim is an
isometry when α = 1, otherwise, the product by |a| allows the sim-
ilarity to achieve scaling transformation. With the term b, the sim-
ilarity is able to achieve translation transformation. The product of
eiθa and s results into a rotation transformation, whereas the product
of eiθa and s̄ yields a reflection transformation. In the former case,
sim is called direct similarity, and it is called indirect similitude in
the later case. Direct similitude preserves orientation, while indirect
similitude reverses the order. Thus, sim performs rotation or reflec-
tion combined with scaling and translation simultaneously.
We denote by Sd ⊂ C2 the set of all direct similarities defined on the
complex plane. When endowed with the operation of composition,
the set Sd is a non-Abelian group since (a, b) ◦ (c, d) = (ac, ad+ b)
whereas (c, d) ◦ (a, b) = (ac, bc + d). We note that the complex
couple (u, v) represents the transformation u · s+ v.

3.2 Fractal Knowledge Graphs

Although the definition of a fractal is not unanimously accepted
among mathematicians, a fractal can be seen as a geometrical shape
formed by an identical pattern repeating on an ever decreasing scale.
The pattern of a fractal persists at arbitrarily small scales. They are
therefore called self-similar geometric shapes. The concept of frac-
tals is present in nature, geometry, and algebra. Examples of fractals
in the real world include trees, seashells, and river networks. Alge-
braic and geometric fractals can be formed by recursively solving
analytical equations or repeatedly performing a simple geometric
process. The Mandelbrot set and Sierpinski triangle are examples
of algebraic and geometric fractals respectively. Although fractals
find their applications in graph theory as Sierpinski gasket graphs,
and in social networks as Sierpinski graphs, it has never been used
for (multi-relational) KGs to the best of our knowledge. We intro-
duce here the first example of a fractal KG, the Sierpinski Gasket
KG (SGKG) while discussing the concepts related to its definition.

Knowledge Graphs. Given a set C of countable infinite con-
stants. A knowledge graph (KG) is a directed edge-labeled graph
G = (V,E, L) where (1) V ⊆ C is a set of nodes, (2) L ⊆ C is a
set of edge labels, and (3) E ⊆ V × L× V is a set of edges.

Sierpinski triangles are inductively defined as follows:
Base case: A Sierpinski triangle is a triangle t, where
upperCorner(t)=a, leftCorner(t)=c, rightCorner(t)=b and size(t)=1.
Inductive step: Given Sierpinski triangles T1, T2, and T3 of the
same size, i.e., size(T1)=size(T2)=size(T3). A Sierpinski triangle
T4 is defined as the combination of T1, T2, and T3 (denoted
by T1

⊕
T2

⊕
T3), where upperCorner(T4)=upperCorner(T1),

leftCorner(T4)=leftCorner(T3), rightCorner(T4)= rightCorner(T2)
and size(T4)=3*size(T1). Figure 1a illustrates two Sierpinski
triangles; the one at the top corresponds to a triangle (as defined by



the base case), while the Sierpinski triangle at the bottom is created
from Sierpinski triangles T1, T2, and T3 (by the inductive step).

A Sierpinski Gasket KG (a.k.a. SGKG) is a directed edge-
labeled graph SGKG = (V,E, L) inductively defined as follows:
Base case: Given a triangle t with upperCorner(t) = a,
leftCorner(t) = c, rightCorner(t) = b. The SGKG respective
for t, SGKGt = (V,E, L), where V = {a,b,c}, L = {hasSuccessor,
sibling, hasPredecessor}, and E = {(c, hasSuccessor, a), (a, sibling,
b), (b, hasPredecessor, c))}.
Inductive step: Given three Sierpinski triangles T1, T2,
and T3, and their respective three Sierpinski Gasket KGs
SGKGT1 = (VT1, ET1, LT1), SGKGT2 = (VT2, ET2, LT2),
and SGKGT3 = (VT3, ET3, LT3). Suppose T4 is a Sier-
pinski triangle resulting of combining T1, T2, and T3 (i.e.,
T4=T1

⊕
T2

⊕
T3). The Sierpinski Gasket KG for T4, SGKGT4=

(VT4, ET4, LT4) is defined as follows: VT4 = VT1 ∪ VT2 ∪ VT3

, LT4 = LT1 ∪ LT2 ∪ LT3 ∪ {sameAs}, and ET4 =
ET1 ∪ ET2 ∪ ET3∪ {(leftCorner(T1), sameAs, upperCorner(T3)),
(upperCorner(T3), sameAs leftCorner(T1)), (rightCorner(T1),
sameAs, upperCorner(T2)), (upperCorner(T2), sameAs,
rightCorner(T1)), (rightCorner(T3), sameAs, leftCorner(T2)),
(leftCorner(T2), sameAs, rightCorner(T3))}.

Knowledge Graph Embedding (KGE). Knowledge Graph Em-
bedding models are capable of transforming entities and their re-
lationships in a KG into a low-dimensional continuous latent vec-
tor space that preserves the KG’s structure. Given a directed edge-
labeled graph G = (V, E, L) and set of vectors ζ. A KGE of G is a
pair of mappings (ϵ, σ) such that (1) ϵ: V → ζ, i.e., ϵ maps an entity
e in V to a vector ϵ(e) in ζ, (2) σ: L → ζ, i.e., σ maps a directed edge
labeled l to a vector σ(l) in ζ. A score function ϕ: V×L×V → R is
used to measure the plausibility of candidate triples represented into
latent vector space, triples ⟨s, r, o⟩ with the higher score ϕ(s, r, o)
values conveys better plausibility of the prediction of ⟨s, r, o⟩.

4 The SimE Approach
The task of knowledge graph embedding completion consists of pre-
dicting the missing subject or object entity of incomplete facts on
the form (s, r, ?) or (?, r, o). This tests the ability of the embed-
ding model to distinguish the true entity among a batch of entities.
To emphasize this, we extend the work of Sun et al.–in the RotatE
model– by designing a model which uses attention mechanics to ef-
ficiently discriminate between true and false facts. Furthermore, the
model uses similarity transformation which allows it to simultane-
ously learn rotation, translation, and scaling transformations impor-
tant for structural and relational pattern preservation.
Let s,o ∈ Cn represent the n-dimensional complex embeddings of
the subject and object entities. Thus, entities have real and imaginary
parts which belong to Rn. Relations between entities are represented
by similarity transformations. That is, relations are embedded by Sn

d

vectors that is ar,br ∈ Cn so that a subject entity s is transformed
to a⊙ s⊕ b by the relation r. By ⊙ and ⊕, we meant element-wise
complex product and addition. In the polar form, the complex vector
a becomes |a|eiθa . Thus, a⊙ s rotates (by an angle θa) and then
scales (enlarging or shrinking by a uniform scale factor |a|) the sub-
ject embedding. It is worth noting that the similarity transformation
allows relations to preserve patterns such as symmetry and antisym-
metry, composition, hierarchy, and 1-to-1. To accurately predict the
missing entities, KGE models assign a score to each test triple. The
higher the score, the more plausible the triple. As most KGE models,

our model SimE uses the Euclidean distance to define triple plausi-
bility. The score of triple (s, r, o) is then given by

f(s, r, o) = −∥õ⊖ o∥2 (2)

where õ is the final-transformed subject and ⊖ is the elementwise
complex subtraction. Existing KGE models use only the score of
triples as a hard constraint to learn entity and relation embeddings
in a way that corrupted entities are positioned far away from the tar-
get entity. To further facilitate this positional separation, SimE uses
an attention mechanism in addition to the score function. First, SimE
defines relation specific attention vector embeddings r ∈ Cn and two
intermediate transformed subjects su = a⊙ s and sd = ā⊙ s. We
thought of su and sd as resulting from an upward- and a downward-
rotation respectively, since the former uses the angle-vector θa and
the later uses −θa. The reason behind the use of ā for the second
transformation is to empower the model with the ability to empha-
size more on separating true from corrupted subjects.
These three embeddings r, su, and sd are then combined to compute
two attention coefficients,

αr
k(s) =

er
T sk

erT su + erT sd
(3)

where k ∈ {u, d} and rT sk is the inner product of the two vectors.
The final-transformed subject is given by

õ = b⊕ αr
u(s)su ⊕ αr

d(s)sd. (4)

The two attention coefficients sum to 1. The range of their values
induces three scenarios: αu ≫ αd, αu ≪ αd, αu ≃ αd;, where
≫ (≪) is the ‘much greater (less) than’ symbol. For a given rela-
tion and subject entity, these three scenarios mean the relation pays
more attention to the upward-, downward-, and identity-rotation in
transforming the subject entity, respectively. By identity rotation, we
meant the angle of rotation is close to zero. We then define the overall
adherence of relations to the type of rotation transformation by

adhu =
100

NE

∑
(s,r,o)∈KG

δ{αr
u(s)≥αr

d
(s)},

adhd = 100− adhu,

(5)

where NE and δ denote the cardinality of the set E, and the Kro-
necker delta function. A relation whose adherence adhu is almost
equal to 100 (or 0) is a relation that consistently uses the upward-
(or downward-) rotation transformation. Otherwise, it is reduced to
scaling and translation transformations.
We finally compare the transformed subject and the object. In order
to train the model, the cross entropy loss is used with uniform neg-
ative sampling, where negative examples from (s, r, o) are sampled
from all possible triples generated by replacing subject or object en-
tities. True negative samples are filtered out from the negative sample
batches. We used the cross-entropy loss function

loss =
∑

(s,r,o)∈KG
(− log( f(s,r,o)∑

o′∈E
f(s,r,o′) )− log( f(s,r,o)∑

s′∈E
f(s′,r,o) )) (6)

to evaluate the accuracy of the model. We denoted by s′ or o′ the
corrupted subject or object entities obtain from the triple (s, r, o).
Theoretical Analysis of SimE on Subsumption. Our model SimE
subsumes some existing KGE models. This means a difference in
the performance of these models compared to SimE is a consequence



Table 1: Statistics of Benchmarks. The table on the left represents the triple counts of four real-world benchmarks and four synthetic benchmarks. Conversely,
the Table on the right illustrates the triple counts for the four real-world benchmarks with their relationship types.

Benchmarks Triples Entities Relations
French Royalty 12,554 2,656 12
Family 28,358 3,007 12
YAGO3-10 1,179,040 123,182 37
WN18RR 93,003 40,943 11
SGKG 1 72,720 36,450 4
SGKG 2 54,585 36,450 4
SGKG 3 54,585 36,450 6
SGKG 4 72,720 36,450 6

Relation
Type

Benchmarks
French Royalty Family YAGO3-10 WN18RR
nV | nL | nE nV | nL | nE nV | nL | nE nV | nL | nE

1:1 2651, 12, 10693 2717, 12, 6887 122406, 38, 340992 40835, 11, 71015
1:N 1325, 6, 1696 1592, 12, 3462 114444, 34, 915478 26506, 11, 38938
N:1 2271, 11, 7393 1463, 10, 3397 121840, 37, 1042791 38623, 11, 65379
N:M 1675, 5, 3375 2578, 10, 5963 121681, 34, 1002950 40943, 11, 93003

Table 2: Experimental results on four real-world KGs. Results in bold and underlined represent the best and second-best, respectively.
TransE SimE RotE ComplEx RotatE RefE MurE CP AttEKG MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

French Royalty 0.441 0.304 0.723 0.661 0.713 0.638 0.570 0.516 0.540 0.484 0.610 0.504 0.627 0.520 0.479 0.358 0.627 0.522
Family 0.497 0.263 0.764 0.612 0.586 0.357 0.906 0.862 0.853 0.789 0.561 0.340 0.624 0.438 0.658 0.519 0.659 0.484

YAGO3-10 0.099 0.046 0.116 0.061 0.105 0.051 0.381 0.306 0.346 0.266 0.105 0.051 0.115 0.060 0.381 0.304 0.113 0.059
WN18RR 0.156 0.031 0.368 0.304 0.374 0.316 0.292 0.280 0.287 0.279 0.358 0.304 0.367 0.305 0.297 0.283 0.370 0.314

of the difference in their designs. We use the logical consequence
symbol to formulate the statement, m |= M which means that the
model M subsumes the model m.
TransE |= SimE. TransE [5] is a KGE model which proposes a ge-
ometric interpretation of the latent space and interprets relation vec-
tors as translations in vector space. Analytically, TransE attempts to
achieve s ⊕ r ≈ o. TransE can preserve antisymmetric and com-
position properties of relations, however, it can not naturally model
1-n, n-1, and n-m relationships. Observing that the transformation
s 7→ s⊕ b ∈ C is the complex version of TransE, the set of transla-
tion transformations in the complex plane is a subspace of the sim-
ilarity group. This means TransE corresponds to a similarity whose
a = 1. Thus, SimE subsumes TransE.
RotatE |= SimE. The KGE model RotatE [27] represents each re-
lation as a rotation from the subject entity to the object entity in the
complex latent space. This is expressed as eiθ ⊙ s which is a similar-
ity that satisfies the conditions, |a| = 1, and b = 0. In other words,
RotatE uses a subspace of the similarity group to embed relations.
This is to say, SimE subsumes RotatE as well. RotatE can efficiently
model symmetric relations.
Model Complexity. As mentioned in Cao et al. [7], SimE has the
same time complexity as other Euclidean models, i.e., O(n) where
n is the space dimensionality of the KG entities. However, SimE
does not require RotE’s rotation-translation transformation twice;
contrary, SimE resorts to an attention mechanism to select rotation
or translation. Thus, SimE space complexity is O(NV n + 2NLn),
where NV : entities’ number and NL relations’ number.

5 Experimental Study

KGE models are commonly evaluated using LP tasks. Here, an LP
task involves identifying missing entities to complete a triple (s, r, ?).
For instance, (Toni Kroos, playsFor, ?), where ? is Real Madrid. To
identify plausible entities for an incomplete triple, the score function
is obtained to estimate the likelihood of the entities. To evaluate LP,
we remove the tail entities from the testing set, calculate the scor-
ing function for each triple in the training data, and rank them from
higher to lower. Finally, the average values for MRR and Hits@1 are
presented. Overall, our empirical study includes 432 testbeds; and 9
KGE models on 24 benchmark KGs assessed with 2 metrics. Among
these, 126 testbeds demonstrate the effectiveness of SimE model. We
assess the effectiveness of SimE to capture knowledge and enrich the
KG completion process. In particular, this work explores the follow-
ing research questions: RQ1) What is the effectiveness of SimE for
each type of relationship in the KG completion task? RQ2) How does
SimE use the attention vector to embed the entities? RQ3) Could
SimE take advantage of the geometric properties of similarity trans-
formations to preserve self-similar sub-graphs?

5.1 Benchmarks

To assess the efficacy of SimE in representing bijections in KGs,
controlled experiments were conducted utilizing real-world KGs;
namely the French Royalty KG [15], the Family KG [16], YAGO3-
10 [20], WN18RR [21] and four synthetic benchmarks. Table 1
shows the statistics of the benchmark KGs. Each benchmark KG is
divided into four categories: one-to-one (1:1) , one-to-many (1:N) ,
many-to-one (N:1) , and many-to-many (N:M) relationships, demon-
strate how entities are connected in KGs to any other entity. For ex-
ample, in a 1:1 relationship, each entity in the relationship pair can
be associated with at most one entity in the KG, representing a bi-
jection. Similarly, 1:N relationships state that an entity in a KG is
associated with multiple other entities in a KG, and so on. In sum-
mary, the cardinalities in a KG help to accurately model the rela-
tionships between different entities, ensuring that the data structure
represents real-world scenarios effectively. These subgraphs of the
state-of-the-art benchmarks were created to evaluate the performance
of SimE in all scenarios. The Family KG represents the biological
links (e.g., father, sibling, etc.) that connect several family members.
The French Royalty KG, collected from DBpedia, depicts French
royal families with various relationships, such as successors, child,
and siblings. Moreover, YAGO3-10 and WN18RR use a hierarchical
taxonomy based on Wikipedia to represent many entities and their
relationships. SimE can identify patterns like fractals and bijections,
as illustrated in Figure 1b. To demonstrate the distinctive behavior
of SimE, we generated the synthetic benchmarks (SGKG 1, SGKG
2, SGKG 3, and SGKG 4) comprising fractals of Sierpinski triangles
(a.k.a. triangles), where each fractal is connected by isomorphic re-
lations (e.g., sameAs), and the benchmarks comprises of fractals of
size 243. SimE detects patterns, e.g., bijections and isomorphisms,
observed in fractal-like KGs. The synthetic benchmarks comprise
two types of connections: symmetric and isomorphic. When Sier-
pinski triangles are connected isomorphically, it indicates that there
is a structural similarity between the triangles such that their ver-
tices and edges can be mapped onto each other without altering the
connections. Symmetry in connections implies that the relationship
is bidirectional. If node A is connected to node B, then node B is
also connected to node A. SGKG1 includes isomorphic connections
between the Sierpinski triangles, as seen in Figure 1a using symmet-
ric sameAs relationship. The triangles T1, T2, and T3 are connected
symmetrically using sameAs. The leftCorner of T1 is symmetrically
connected to the upperCorner of T3, similarly rightCorner of T1 is
connected to the upperCorner of T2, and rightCorner of T3 is con-
nected to the leftCorner of T2. However, in SGKG2, the triangles
were not connected symmetrically. That is, the sameAs relationships
were connected in an isomorphic manner, but in a unidirectional
fashion. In other words, the relationships between the triangles T1,
T2, and T3 are not symmetric. In SGKG3, different relationships, in-



Table 3: Experimental results on the synthetic benchmarks. Results in bold and underlined represent the best and second-best, respectively.
KG TransE SimE RotE ComplEx RotatE RefE MurE CP AttE

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1
SGKG 1 0.232 0.000 0.906 0.900 0.944 0.892 0.393 0.393 0.393 0.393 0.578 0.438 0.848 0.789 0.394 0.393 0.909 0.892
SGKG 2 0.404 0.233 0.679 0.676 0.864 0.753 0.000 0.000 0.000 0.000 0.170 0.084 0.693 0.673 0.000 0.000 0.687 0.674
SGKG 3 0.395 0.225 0.668 0.668 0.707 0.697 0.000 0.000 0.000 0.000 0.170 0.084 0.693 0.673 0.000 0.000 0.687 0.674
SGKG 4 0.233 0.000 0.902 0.902 0.948 0.923 0.400 0.400 0.400 0.400 0.591 0.477 0.899 0.876 0.400 0.400 0.914 0.899

Table 4: Experimental results on the four benchmarks and their respective sub-graphs based on the relation type. Results in bold and underlined represent the
best and second-best, respectively. Among all baseline models, SimE-TransE exhibits the highest statistical significant p-value of 1.54× 10−120.

KG TransE SimE RotE ComplEx RotatE RefE MurE CP AttE
MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

French 1:1 0.500 0.376 0.743 0.688 0.747 0.696 0.525 0.460 0.487 0.415 0.645 0.562 0.657 0.550 0.481 0.385 0.663 0.576
Family 1:1 0.421 0.270 0.642 0.530 0.624 0.497 0.385 0.350 0.351 0.317 0.507 0.367 0.530 0.396 0.372 0.322 0.556 0.428
YAGO 1:1 0.122 0.074 0.142 0.102 0.130 0.087 0.090 0.072 0.073 0.046 0.129 0.087 0.141 0.101 0.093 0.073 0.140 0.100

WN18RR 1:1 0.082 0.013 0.198 0.142 0.193 0.142 0.114 0.101 0.108 0.095 0.178 0.134 0.191 0.138 0.114 0.102 0.186 0.139
French 1:N 0.189 0.061 0.046 0.023 0.254 0.155 0.261 0.211 0.247 0.193 0.187 0.096 0.183 0.079 0.174 0.082 0.221 0.114
Family 1:N 0.269 0.099 0.306 0.153 0.341 0.151 0.080 0.053 0.066 0.045 0.306 0.134 0.322 0.154 0.086 0.045 0.336 0.161
YAGO 1:N 0.087 0.037 0.101 0.046 0.093 0.045 0.406 0.323 0.396 0.315 0.094 0.047 0.101 0.047 0.399 0.313 0.097 0.044

WN18RR 1:N 0.221 0.011 0.531 0.443 0.546 0.474 0.480 0.449 0.454 0.426 0.541 0.468 0.560 0.492 0.495 0.457 0.562 0.501
French N:1 0.615 0.555 0.672 0.628 0.664 0.624 0.423 0.347 0.392 0.313 0.653 0.614 0.691 0.651 0.421 0.346 0.685 0.641
Family N:1 0.307 0.150 0.382 0.199 0.399 0.221 0.082 0.048 0.052 0.032 0.376 0.211 0.376 0.202 0.090 0.045 0.387 0.216
YAGO N:1 0.096 0.044 0.111 0.057 0.100 0.047 0.386 0.309 0.361 0.283 0.100 0.047 0.110 0.056 0.392 0.314 0.109 0.056

WN18RR N:1 0.147 0.022 0.376 0.302 0.371 0.301 0.280 0.258 0.271 0.251 0.357 0.295 0.372 0.303 0.290 0.266 0.372 0.306
Family N:M 0.291 0.129 0.360 0.175 0.376 0.186 0.121 0.087 0.102 0.073 0.347 0.183 0.337 0.157 0.137 0.097 0.363 0.188
FrenchN-M 0.289 0.059 0.480 0.416 0.607 0.507 0.582 0.544 0.551 0.506 0.513 0.410 0.521 0.396 0.475 0.368 0.526 0.391
YAGO N:M 0.087 0.037 0.106 0.051 0.094 0.043 0.380 0.303 0.370 0.294 0.093 0.047 0.106 0.051 0.381 0.301 0.104 0.050

WN18RR N:M 0.157 0.031 0.369 0.302 0.373 0.318 0.293 0.281 0.286 0.278 0.359 0.310 0.365 0.306 0.297 0.286 0.370 0.318

cluding sameAs, equivalent, and equal relationships, were employed
to connect triangles T1, T2, and T3, isomorphically in a unidirec-
tional manner. While the nature of these relationships is inherently
symmetric, if not explicitly stated, KGE models are unable to con-
sider them as symmetric relationships. In contrast, the SGKG4 tri-
angles T1, T2, and T3 were connected isomorphically with different
relationships, sameAs, equivalent, and equal. This was explicitly in-
dicated by establishing bidirectional connections, thereby signifying
the presence of symmetric connections.

5.2 Evaluations Setup

In our evaluation, we compare SimE with eight baselines KGE mod-
els, which includes MurE [2], TransE [4], AttE [10], CP [17], Ro-
tatE [28], ComplEx [29], RotE [10], RefE [10]. The translation dis-
tance model, such as TransE, transforms the head entity’s vector
closer to the tail entity with a given relation. Canonical polyadic (CP)
is a tensor factorization approach where entities and relations are rep-
resented by n-dimensional real vectors. MurE is a hyperbolic interac-
tion model capable of effectively modeling hierarchies in KG. Com-
plEx uses complex-valued representations for the entities and rela-
tions. Entities and relations are represented as vectors, and the plausi-
bility score is calculated using the Hadamard product. The Hadamard
product is non-commutative in complex space, allowing ComplEx to
successfully simulate asymmetric relations.
Metrics. We use metrics to evaluate the quality of the KG completion
process. Hits@K evaluates the ratio of correct entity predictions at
the top K predicted links by counting how frequently the true (ground
truth) links occur in the top K ranked predictions provided by the
model. Mean reciprocal rank (MRR) is the average of the reciprocal
ranks of all the triples; it is an indicator of mean rank after removing
the effect of outliers. The evaluation metrics range from 0 to 1, with
higher values indicating better performance of the models.
Implementation. SimE is implemented using PyTorch in Python 3.9,
and all the experiments are performed in a virtual machine on Google
Colab with 40 GiB VRAM and 1 GPU NVIDIA A100-SXM4, with
CUDA version 12.2 (Driver 535.104.05). The benchmark KGs are
divided into an 80-10-10 train-test-valid ratio. To prevent overfitting,
the default settings for the training KGE models include a learning
rate of 1e−1, a batch size of 1000, and Adagrad as the regularization
optimizer with a negative sample size of 50. For reproducibility, the
benchmarks and code are available on GitHub2.
2 https://github.com/NIMI-research/SimE

5.3 Effectiveness of SimE on Link Prediction

We report in Table 2, 3, and 4 the experimental evaluation of the base-
line KGE models and our model SimE on the French Royalty KG,
the Family KG, YAGO3-10, WN18RR and their sub-graphs suffixed
with 1:1, 1:N, N:1, N:M as well as four synthetic KGs. These eval-
uations aim to assess the ability of the model to handle self-similar
and topological patterns in the KGs. This section aims to answer the
research questions RQ1), RQ2), and RQ3).
Whole KG. Our findings outline the detailed analysis of several
KGE models demonstrating the impact of each model in predict-
ing the tail entities more accurately. We evaluated the end-to-end
performance of SimE analogous to the execution of baseline KGE
models in 72 testbeds (Table 2). Across all testbeds, SimE outper-
forms baselines in the French Royalty KG, indicating the effective-
ness of the proposed model in capturing the bijection properties (e.g.,
hasPredecessor) and self-similar entities. Our baselines, and in par-
ticular ComplEx and RotatE, still achieve competitive performance,
while the gap from SimE widens in the French Royalty KG and
WN18RR. SimE showcased the results in capturing similar patterns
based on Euclidean distance with Hits@1 values ranging from 0.061
to 0.661. However, TransE demonstrates comparatively lower perfor-
mance, depicting the model’s ability to handle symmetric and com-
plex relationships. ComplEx and RotatE show robust performance
on YAGO3-10 and the Family KG benchmarks, with Hits@1 values
ranging from 0.306 to 0.892, indicating the effectiveness in captur-
ing complex relationships. Models operating on Euclidean distance,
such as RefE, MurE, and AttE illustrate the static performance in
comparison to SimE, which aligned with the aforementioned fact in
Section 4. Despite promising results, existing KGE models struggle
to capture bijection and self-similar fractals in benchmarks.
Relationship Types. As described above, the performance of SimE
was evaluated over the subgraphs generated with different relation-
ship types, i.e., 1:1, 1:N, N:1, and N:M. We report the empirical eval-
uation over these subgraphs in Table 4. The results suggest that SimE
outperforms the baselines on the 1:1 downstream task with Hits@1
values ranging from 0.102 to 0.688, except on the French Royalty
KG, where it ranks second in both MRR and Hits@1 to RotE. While
the best-performing baselines based on the 1:N relation are Com-
plEx and AttE having values 0.323 and 0.161 respectively, in the
N:1 relation, euclidean distance models such as RotE, MurE, and CP
show robust performance, and in the N:M relations, they are RotE,
ComplEx, and CP. Nonetheless, the performance of SimE is notably

https://github.com/NIMI-research/SimE


stagnant compared to other state-of-the-art models. However, given
the attention mechanism for capturing the similarity between entities,
our proposed SimE model is better suited to capture the character-
istics of 1:1 relationships. That mechanism empowers the model to
emphasize the separation of true and corrupted entities. Furthermore,
the similarity transformations allow SimE to preserve the structural
patterns and 1:1 relations as shown in Table 4.
Two important algebraic properties of similarity group elements are
non-commutativity and invertibility. The relations in the French Roy-
alty and Family KGs are not necessarily commutative. For exam-
ple, consider the triples ⟨Empress_Josephine, hasChild,
Napoleon_II⟩ and ⟨Napoleon_II, hasPredecessor,
Empress_Josephine⟩; if these properties were commutative, the
triple ⟨Napoleon_II, hasChild, Empress_Josephine⟩
would be part of the French Royalty KG which would mean
that the triple ⟨Empress_Josephine, hasPredecessor,
Napoleon_II⟩ could be predicted, contributing to the outstanding
performance of SimE on these two family-related KGs.
Synthetic SGKGs. Table 3 displays the results for the synthetic
benchmarks. The results represent a detailed study of numerous KGE
models, revealing how each model affects the accuracy with which
tail entities are predicted. We tested the end-to-end performance of
SimE in 72 testbeds, comparing it to baseline KGE model execu-
tion. SimE outperforms baselines in SGKG 1, suggesting the effec-
tiveness of the proposed model in capturing symmetric properties
(e.g., sameAs) and self-similar structures with Hits@1 of 0.900 in
SGKG 1. Furthermore, baselines, particularly RotE and AttE show
the second-best performance for SGKG 1 with Hits@1 of 0.892.
When comparing MRR in SGKG 1, RotE surpasses SimE by 0.944.
SGKG 2 does not contain symmetrical relationships, SimE has the
second-best performance with Hits@1. RotE exhibits competitive
behavior in SGKG 2 with the highest Hits@1 of 0.753, followed
by SimE and AttE with a minimal difference of Hits@1 of 0.676
and 0.674. SGKG 3 also lacks symmetric relationships but contains
different types of isomorphic relations, e.g., equal, equivalent, and
sameAs. RotE ranked first with Hits@1 of 0.697, followed by AttE
with Hits@1 of 0.674. SimE is very competitive, with Hits@1 of
0.668. Lastly, in SGKG 4, symmetric relationships are utilized to
connect the Sierpinski triangles with different relationships. RotE
performed the best and SimE performed at the second-best position
with Hits@1 of 0.923 and 0.902.
The findings suggest that existing KGE models produce promising
results but fall short in capturing the bijection and self-similar frac-
tals included in the SGKG 1 and SGKG 4 benchmarks, whereas
SimE outperforms the state-of-the-art KGE models. Synthetic bench-
marks of Sierpinski triangles, coupled with isomorphic relations, re-
vealed new features of SimE and indicated the necessity for a KGE
model capable of identifying complicated geometric structures. Fur-
thermore, the empirical evaluation showed that increasing cycles or
complex geometric structures with isomorphic connections follow-
ing bijections would improve SimE’s performance. The SimE model
employs attention mechanics to effectively distinguish between true
and false facts, resulting in improved performance and KG comple-
tion with true facts demonstrating higher efficiency. Our experimen-
tal assessment shows that SimE can recognize complicated geomet-
ric structures like fractals, with effective performance. In Euclidean
space, SimE outperformed KGE models, but translational models
like TransE performed ineffectively in recognizing complicated sym-
metric structures in SGKG 1. However, KGE models such as Com-
plEx and RotatE struggled to identify complex structures and bijec-
tions, necessitating the use of SimE.

5.4 Discussion

Our results from different KGs demonstrate that the SimE model is
ranked among the top-performing models. However, SimE has a few
shortcomings that lie in the model design and the considered simil-
itude. SimE is an attention-based model, and weights two interme-
diate relation embeddings learned from the dataset. These weights
are the attention coefficients. The performance of the model comes
with an effective attention coefficient learning. Failing to do this,
SimE is not expected to surpass its subsumed models. On another
level, the choice of the relational transformations to achieve the in-
termediate transformations can rend SimE to perform low. The re-
sults presented in Table 2, 3 and 4 are trained with default hyper-
parameters settings, indicating optimizing the hyperparameters will
enhance SimE model’s performance. We conducted two statistical
tests (Wilcoxon test and Spearman’s rho) to evaluate SimE model
effectiveness among baselines. The Wilcoxon test evaluates the dif-
ferences between the accurate tail predictions among models. For
instance, in French Royalty KG, the values depict that among all
the models, SimE is statistically significant with the p-value ranging
from 5.37×10−34 to 1.43×10−4. However, Spearman’s rho reveals
the strength of the association between ranks of predictions. In this
case, the p-value ranges from 2.75 × 10−96 to 0.00 × 10−1. In the
synthetic benchmark, SGKG 1, the performance of SimE is signifi-
cant with other models. The p-values for Wilcoxon and Spearman’s
rho range from 3.80×10−9 to 0.00×10+00 and from 1.66×10−64

to 9.83 × 10−127 respectively. In French 1:1 KG, the Wilcoxon p-
value is 5.37 × 10−34 to 1.43 × 10−4. The Spearman’s rho values
are 8.01 × 10−5 and 0.737. Thus, the statistical tests shed light on
SimE’s significant performance among other models.

6 Conclusions and Future Work

In our study, we focus on leveraging the algebraic (bijection) and
geometric (similarity) properties of similarity transformations to en-
hance the representation of self-similar fractals in KGs. Our method,
named SimE, is validated through empirical analysis and demon-
strates its proficiency in capturing bijections and similarities within
benchmark KGs. We conducted comprehensive experiments that
encompassed one-to-one, one-to-many, many-to-one, and many-to-
many relational patterns, analyzing both the performance of state-
of-the-art models and our proposed model, SimE. Additionally, we
developed a fractal-like KG designed to evaluate the models’ effec-
tiveness in learning subgraph similarities. This approach allows us to
assess how well each model handles the complex structures and rela-
tionships inherent in KGs. In future work, we will extend the testbeds
to include more complex fractals. We also plan to investigate real-
world KGs in their self-similar structures and further extend SimE
to be capable of preserving those. Furthermore, KGE models require
hyperparameter tuning to achieve improved efficiency in the perfor-
mance of KG completion with true facts, allowing models to rank
higher. In terms of the theoretical framework of SimE, it is planned
to be generalized further to subsume further state-of-the-art models.
This would allow SimE to outperform and effectively detect complex
geometric structures in real-world KGs.
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