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Context

⊳ Neurosymbolic AI [Garcez and Lamb 2023]
⊳ flexibility and power of neural ML
⊳ explainability and portability of symbolic AI

⊳ Program synthesis
⊳ per-problem algorithm design [Bulitko et al. 2022]
⊳ algorithm discovery [Stevens, Bulitko, and Thue 2023]

⊳ Multi-agent systems
⊳ communicate among themselves [Sirota et al. 2019]
⊳ communicate to humans [Vasileiou and Yeoh 2023]

⊳ Downsides
⊳ ML/synthesis/articulation algorithms are human-constructed

⊳ programmatic RL [Verma et al. 2019]
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Our Target: Emergent Learning & Self-Articulating Agents

⊳ Learn
⊳ individual learning
⊳ social learning

⊳ Communicate
⊳ among themselves
⊳ with humans

⊳ Articulate/explain their behaviour
⊳ to other agents
⊳ to humans

⊳ All components emergent (i.e., not human-constructed)
⊳ learning
⊳ articulating
⊳ communicating
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Hypothesis: Levels of Computation

⊳ Critical task
⊳ agent can do it
⊳ agent cannot articulate how it does it

⊳ For any cognitive agent a critical task exists

⊳ Two agents belong to cognitive level i when
⊳ neither can articulate the other’s critical task

⊳ Level i + 1:
⊳ agents at level i + 1 can articulate critical tasks for agents at level i
⊳ smallest increase of complexity from i to i + 1
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Recursion Theory

⊳ Computability of functions [Rogers 1987]

⊳ a Turing machine (TM) computes ϕ ∶ N→ N functions
⊳ all such functions can be integer-indexed: ϕ0, ϕ1, . . .

⊳ a set W ⊆ N is recursive iff a TM program can check membership in it

⊳ a set W ⊆ N is recursively enumerable iff a program can enumerate its
members
⊳ if a set W ⊆ N is recursively enumerable but not recursive then there exists ϕi

⊳ ϕi(m) = 1 when m ∈ W
⊳ ϕi(m) does not stop when m /∈ W

⊳ What about the set K = {i ∣ ϕi(i) halts} ?
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Recursion Theory
⊳ K = {i ∣ ϕi(i) halts} is recursively enumerable but not recursive

⊳ Now consider a TM with an oracle A ⊆ N (denote it by TMA)
⊳ on it ϕi(m) computes normally but can query if j ∈ A in the process

⊳ Is TMK more powerful than TM?
⊳ TMK can compute everything that TM can
⊳ TMK can also compute things that TM cannot

⊳ K becomes recursive for TMK

⊳ Analogy
⊳ agent doing a task ∼ enumerating members of a set
⊳ agent articulating a task ∼ checking membership in a set
⊳ critical task: enumerating members of K
⊳ cognitive level i ∼ TM
⊳ cognitive level i + 1 ∼ TMK
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A-life

⊳ Base task: survival in A-life [Ackley and Littman 1991;
Wilensky and Rand 2015]
⊳ 2D world with grass and agents

⊳ Control module
⊳ feedforward ANN
⊳ specified by the agent’s gene
⊳ evolved ANN architectures and weights

⊳ Articulation module
⊳ neural formula synthesizer (FC or transformer)
⊳ externally developed

⊳ Interpretation module
⊳ manually coded formula interpreter

⊳ to update the ANN policy
⊳ within life-time learning
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A-life: Neural Agents
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A-life: Formula Fitting

argmax (g←,g↑,g→,g↓)
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A-life: Articulation

argmax (g←,g↑,g→,g↓)
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Why Articulate?

⊳ Self-reflection via articulation can be useful
⊳ neural⟳ symbolic learning [Verma et al. 2019]
⊳ enables knowledge-based bias

⊳ Articulation is important for explainable AI

⊳ Articulation enables knowledge transfer (e.g.,
parenting)
⊳ teacher: neural→ symbolic
⊳ learner: symbolic→ neural

argmax (g←,g↑,g→,g↓)
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Articulation of Critical Tasks

⊳ Agent articulating⟳ interpreting
⊳ neural⟳ symbolic
⊳ symbolizations can be simplifications/abstractions
⊳ symbolizations must be simplifications/abstractions for critical tasks

⊳ due to articulation/interpretation overhead
⊳ thus unable to fully symbolize neural knowledge

⊳ for survival (a critical task)

⊳ need additional experiential learning (neural)

⊳ Human education
⊳ listening is not enough
⊳ learning via doing
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The Bitter Lesson

⊳ No agent is able to articulate its own critical tasks

⊳ Failure of AI based on human idea of human
reasoning [Sutton 2019]
⊳ “We have to learn the bitter lesson that building in how

we think we think does not work in the long run.”
⊳ “The second general point to be learned from the

bitter lesson is that the actual contents of minds are
tremendously, irredeemably complex; we should stop
trying to find simple ways to think about the contents
of minds, such as simple ways to think about space,
objects, multiple agents, or symmetries.”
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How to Articulate?

⊳ program synthesis
⊳ no need for pre-training
⊳ slow
⊳ human engineered
⊳ unreliable

⊳ neural distillers (FC or transformers)
⊳ fast
⊳ the same hardware: can be evolved (in principle)
⊳ massive pre-training

⊳ 0.31 × 106 training data (I/O pairs)
⊳ massive in size

⊳ FC: 49 versus 15 × 106 ANN weights
⊳ unlikely to emerge on the same evolutionary scale
⊳ would kill the agent via energy depletion
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A Simpler Testbed: 1D A-life

⊳ Base task: survival in A-life
⊳ a binary 1D torus
⊳ agent sees grass left/right (n = 2 inputs, 2n = 4 states)

⊳ Control module
⊳ what do I do in state s?
⊳ truth table (2n = 4 rows)
⊳ policy π ∶ B2 → B

⊳ Interpretation module
⊳ what would another agent π do in state s?
⊳ truth table (22+2n = 64 rows)
⊳ universal policy πU ∶ B2 ×B2n → B

⊳ Both are possibly small enough to emerge in evolution
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Conclusion

⊳ Self-explaining AI agents to emerge

⊳ Costs and limits of self-explanation

⊳ A hierarchy of computational levels

⊳ bulitko@ualberta.ca
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