## Emergence, Costs and Limitations of Self-Articulation

Vadim Bulitko



August 18, 2025

### Outline

- Introduction
  - ▶ team
  - context
  - target
- ▶ Levels-of-Computation Hypothesis
  - costs & limitations of articulation
- ▶ Testbeds & Preliminary Findings

### Team

- Matthew Brown (UofA, neuroscience)
- Vadim Bulitko (UofA, CS / AI)
- ▶ Ramon Lawrence (UBCo, CS / databases)
- Shinichi Nakagawa (UofA, evolutionary biology)
- Roscoe Smith (UofA, CS / AI)
- Shway Wang (UofA, CS / AI)
- William Yeoh (WashU, CS / AI)
- Michael Youngblood (Filuta AI, CS / AI)









### Context

- Neurosymbolic AI [Garcez and Lamb 2023]
  - flexibility and power of neural ML
  - explainability and portability of symbolic Al
- Program synthesis
  - per-problem algorithm design [Bulitko et al. 2022]
  - algorithm discovery [Stevens, Bulitko, and Thue 2023]
- Multi-agent systems
  - communicate among themselves [Sirota et al. 2019]
  - communicate to humans [Vasileiou and Yeoh 2023]

#### **Downsides**

- ML/synthesis/articulation algorithms are human-constructed
  - programmatic RL [Verma et al. 2019]

# Our Target: Emergent Learning & Self-Articulating Agents

- Learn
  - individual learning
  - social learning
- Communicate
  - among themselves
  - with humans
- Articulate/explain their behaviour
  - to other agents
  - to humans
- All components emergent (i.e., not human-constructed)
  - learning
  - articulating
  - communicating

## Hypothesis: Levels of Computation

- Critical task
  - agent can do it
  - agent cannot articulate how it does it
- ▶ For any cognitive agent a critical task exists
- ▶ Two agents belong to cognitive level *i* when
  - neither can articulate the other's critical task
- ▶ Level *i* + 1:
  - $\triangleright$  agents at level i+1 can articulate critical tasks for agents at level i
  - ▶ smallest increase of complexity from i to i + 1

## Recursion Theory

- Computability of functions [Rogers 1987]
- ▶ a Turing machine (TM) computes  $\varphi : \mathbb{N} \to \mathbb{N}$  functions
  - ightharpoonup all such functions can be integer-indexed:  $\varphi_0, \varphi_1, \dots$
- ▶ a set  $W \subseteq \mathbb{N}$  is recursive iff a TM program can check membership in it
- ightharpoonup a set  $W\subseteq \mathbb{N}$  is recursively enumerable iff a program can enumerate its members
  - ▶ if a set  $W \subseteq \mathbb{N}$  is recursively enumerable but not recursive then there exists  $\varphi_i$ 
    - $\varphi_i(m) = 1 \text{ when } m \in W$
    - $ho \varphi_i(m)$  does not stop when  $m \notin W$
- ▶ What about the set  $K = \{i \mid \varphi_i(i) \text{ halts}\}$ ?

## **Recursion Theory**

- $ightharpoonup K = \{i \mid \varphi_i(i) \text{ halts}\}\$ is recursively enumerable but not recursive
- ▶ Now consider a TM with an oracle  $A \subseteq N$  (denote it by  $TM^A$ )
  - ▶ on it  $\varphi_i(m)$  computes normally but can query if  $j \in A$  in the process
- ightharpoonup Is  $TM^K$  more powerful than TM?
  - ▶ TM<sup>K</sup> can compute everything that TM can
  - ▶ TM<sup>K</sup> can also compute things that TM cannot
    - $\triangleright$  K becomes recursive for TM<sup>K</sup>
- Analogy
  - agent doing a task ~ enumerating members of a set
  - ▶ agent articulating a task ~ checking membership in a set
  - ▶ critical task: enumerating members of *K*
  - ▶ cognitive level i ~ TM
  - ▷ cognitive level  $i + 1 \sim TM^{K}$

### A-life

- ▶ Base task: survival in A-life [Ackley and Littman 1991; Wilensky and Rand 2015]
  - ▶ 2D world with grass and agents

#### Control module

- feedforward ANN
- specified by the agent's gene
- evolved ANN architectures and weights

#### Articulation module

- neural formula synthesizer (FC or transformer)
- externally developed

#### Interpretation module

- manually coded formula interpreter
  - to update the ANN policy
  - within life-time learning



## A-life: Neural Agents



```
0.233
        0.732
                0.875
0.003
        0.206 \quad 0.549 \rightarrow 2
0.485
       0.399 0.439
0.843
        0.872 0.522
0.498
        0.023 \quad 0.738 \rightarrow 4
0.783 0.934 0.457
0.196
        0.085 0.382
0.332
        0.001 \quad 0.249 \rightarrow 1
0.032
        0.118 0.489
```

## A-life: Formula Fitting

```
0.233
         0.732 0.875
0.003
         0.206 \quad 0.549 \rightarrow 2
0.485 0.399 0.439
0.843
         0.872 0.522
0.498
         0.023 \quad 0.738 \rightarrow 4
                                                                        \operatorname{argmax}(g_{\leftarrow}, g_{\uparrow}, g_{\rightarrow}, g_{\downarrow})
0.783 0.934 0.457
0.196
          0.085
                   0.382
0.332
          0.001
                  0.249 \rightarrow 1
0.032
          0.118 0.489
```

### A-life: Articulation



# Why Articulate?

- Self-reflection via articulation can be useful
  - ▶ neural ♂ symbolic learning [Verma et al. 2019]
  - enables knowledge-based bias
- Articulation is important for explainable AI
- Articulation enables knowledge transfer (e.g., parenting)
  - ▶ teacher: neural → symbolic
  - ▶ learner: symbolic → neural



$$\operatorname{argmax}\left(g_{\leftarrow},g_{\uparrow},g_{
ightarrow},g_{\downarrow}
ight)$$

### **Articulation of Critical Tasks**

- ▶ Agent articulating ♂ interpreting
  - ▶ neural ♂ symbolic
  - symbolizations can be simplifications/abstractions
  - symbolizations must be simplifications/abstractions for critical tasks
    - due to articulation/interpretation overhead
  - thus unable to fully symbolize neural knowledge
    - for survival (a critical task)
  - need additional experiential learning (neural)
- Human education
  - listening is not enough
  - learning via doing

### The Bitter Lesson

- No agent is able to articulate its own critical tasks
- ▶ Failure of AI based on human idea of human reasoning [Sutton 2019]
  - "We have to learn the bitter lesson that building in how we think we think does not work in the long run."
  - "The second general point to be learned from the bitter lesson is that the actual contents of minds are tremendously, irredeemably complex; we should stop trying to find simple ways to think about the contents of minds, such as simple ways to think about space, objects, multiple agents, or symmetries."



### How to Articulate?

- program synthesis
  - no need for pre-training
  - Slow
  - human engineered
  - unreliable
- neural distillers (FC or transformers)
  - ▶ fast
  - ▶ the same hardware: can be evolved (in principle)
  - massive pre-training
    - $\triangleright$  0.31  $\times$  10<sup>6</sup> training data (I/O pairs)
  - massive in size
    - ▶ FC: 49 versus 15 × 10<sup>6</sup> ANN weights
    - unlikely to emerge on the same evolutionary scale
    - would kill the agent via energy depletion



input 1

1: fc 16

₹re/i,

# A Simpler Testbed: 1D A-life

- Base task: survival in A-life
  - a binary 1D torus
  - $\triangleright$  agent sees grass left/right (n = 2 inputs,  $2^n = 4$  states)

#### **Control module**

- ▶ what do I do in state s?
- ▶ truth table  $(2^n = 4 \text{ rows})$
- $\triangleright$  policy  $\pi: \mathbb{B}^{2} \to \mathbb{B}$

### Interpretation module

- $\triangleright$  what would **another agent**  $\pi$  do in state s?
- ▶ truth table  $(2^{2+2^n} = 64 \text{ rows})$ ▶ universal policy  $\pi^U : \mathbb{B}^2 \times \mathbb{B}^{2^n} \to \mathbb{B}$
- ▶ Both are possibly small enough to emerge in evolution



### Conclusion

- Self-explaining AI agents to emerge
- Costs and limits of self-explanation
- ▶ A hierarchy of computational levels

▶ bulitko@ualberta.ca



# Acknowledgments

- Valeriy Bulitko
- ▶ Jonathan Schaeffer
- ▶ Evelyn Chiew
- ▶ Ethan Chung
- ▶ Emma Reid
- Dinara Shukayeva
- ▶ NSERC
- ▶ CERC
- ▶ DRAC

# Bibliography



Ackley, D. and M. Littman (1991). "Interactions between learning and evolution". In: Artificial life II 10, pp. 487–509.



Bulitko, V. et al. (2022). "Portability and explainability of synthesized formula-based heuristics". In: *Proceedings of SoCS*. Vol. 15. 1, pp. 29–37.



Garcez, A. and L. Lamb (2023). "Neurosymbolic AI: The 3 rd wave". In: AI Review 56.11.



Rogers, H. Jr. (1987). Theory of recursive functions and effective computability. MIT Press.



Sirota, J. et al. (2019). "Towards procedurally generated languages for non-playable characters in video games". In: Proceedings of CoG.



Stevens, J., V. Bulitko, and D. Thue (2023). "Solving Witness-type Triangle Puzzles Faster with an Automatically Learned Human-Explainable Predicate". In: arXiv preprint arXiv:2308.02666.



Sutton, R. (2019). "The Bitter Lesson". In: URL: http://www.incompleteideas.net/IncIdeas/BitterLesson.html.



Vasileiou, S. L. and W. Yeoh (2023). "PLEASE: Generating Personalized Explanations in Human-Aware Planning". In: Proceedings of ECAI.



Verma, A. et al. (2019). "Imitation-projected programmatic reinforcement learning". In: Proceedings of NeurIPS.



Wilensky, U. and W. Rand (2015). An Introduction to Agent-Based Modeling. MIT Press.