
Graph-Based Orchestration of Heterogeneous AI Models:
A Control Node Approach to Composite Intelligence

G. Michael Youngblood , Filip Dvořák , Slavomir Svancar ,
Tomáš Balyo , Michal Ficek and Martin Dousek

Filuta AI, Inc., 1606 Headway Cir STE 9145, Austin, TX 78754, USA
{michael, filip, slavo, tomas, michael, martin}@filuta.ai

Abstract

We present a graph-based framework for Com-1

posite AI systems that integrate multiple AI tech-2

niques to address complex problems. We describe3

an architecture using specialized control nodes4

to orchestrate diverse models including planning,5

machine learning, constraint programming, and6

large language models. The system employs di-7

rected acyclic graphs and behavior trees to manage8

model relationships and execution sequencing. Our9

methodology encompasses data connectors, com-10

putational services, and a containerized deploy-11

ment framework supporting hierarchical, sequen-12

tial, and concurrent model composition patterns.13

Through case studies, we demonstrate how this ar-14

chitecture enables the creation of composite sys-15

tems that leverage the strengths of multiple AI tech-16

niques within a unified operational schema, over-17

coming the limitations of single-model approaches.18

1 Introduction19

There are many techniques for modeling real-world prob-20

lems, and no single technique will dominate as the most21

efficient across most real-world problems for the near fu-22

ture. Instead, modeling real-world problems can be seen as a23

composition of chained, concurrent (parallel or interleaved),24

and/or nested techniques/models, using the most efficient25

technique/model for each of the sub-problems into which26

the real-world problem decomposes. Significant validation27

of this composition approach to solving industrial problems28

can be found in the studies performed by Gartner [Gartner,29

2022], where Composite AI has emerged as one of the most30

promising techniques, following the under-performance of31

deep learning and machine learning in applied projects.32

The system and methods presented here provide a common33

ground for the composition of various models and techniques,34

which we will just refer to simply as just “models” going for-35

ward, into a system. These models include AI Planning, ma-36

chine learning, scheduling, graph theory, constraint program-37

ming, linear programming, large language models (LLMs)38

such as GPT [Floridi and Chiriatti, 2020], multimodal foun-39

dational models, and any other type of element that using40

computation can perform a distinct set of functions produc- 41

ing output from input. 42

This work is motivated by creating systems composed of 43

many models to address the challenges single models face 44

in being able to perform many disparate functions outside of 45

their design/training. Models cannot reason about the opti- 46

mal plan of actions to achieve a goal, dispatch and monitor 47

action execution, act on state information, diagnose failures, 48

and adapt to unexpected events all in a single model. Current 49

automation challenges also involve connecting all actors in 50

the system and collecting their real-time operational data. Ef- 51

ficient and reliable control of a target system to achieve goals 52

requires reasoning about this data using an appropriate com- 53

position of models leading to appropriate action decisions. 54

We introduce a methodology including key building blocks 55

for constructing automation systems designed as a graph with 56

the flexibility to transform into many graph forms for deploy- 57

ment. The key architectural invention is the introduction of a 58

data and model aware, logic-driven control node central to 59

defining a composition that unifies a plurality of disparate 60

models. These compositions can be used to generate code, 61

be containerized, and then deployed autonomously. 62

The Composite AI system provides capabilities to incorpo- 63

rate individual models, allowing the human user to augment 64

the models, compose the models into the operational schema 65

with well-defined inputs, outputs, and goals, and generate 66

stand-alone intelligent automation services that act towards 67

user-defined goals based on the model composition and ob- 68

servations of the world. 69

2 Graphs 70

Our Composite AI system’s foundation is a graph structure, 71

which models pairwise relationships between entities through 72

vertices (nodes) and edges (links). This representation of- 73

fers significant implementation advantages, including clear 74

visualization of relationships, efficient algorithmic process- 75

ing, modular design, and adaptability to dynamic changes. 76

Graphs effectively capture complex hierarchical structures, 77

aid in problem decomposition, and support various data stor- 78

age formats, making systems more efficient and scalable. 79

2.1 Directed Acyclic Graph (DAG) 80

A Directed Acyclic Graph (DAG) features directed edges 81

with specific orientation and contains no cycles. This struc- 82



ture excels at managing dependencies and order, ensuring83

tasks execute only after prerequisites are met. The absence84

of cycles eliminates circular dependencies, simplifying reso-85

lution and preventing deadlocks. DAGs support efficient opti-86

mization algorithms and provide clarity in representing com-87

plex systems, making them ideal for system management and88

control.89

2.2 Behavior Trees (BT)90

Behavior trees are hierarchical graphs that define autonomous91

agent behavior in a tree-like structure. They consist of three92

node types:93

• Composite nodes (→ and ?) control execution flow by94

organizing other nodes95

• Decorator nodes modify child node behavior96

• Leaf nodes perform actions or checks97

Behavior trees enable hierarchical problem decomposition,98

allowing higher-level trees to incorporate lower-level trees99

without requiring detailed knowledge of subproblems. They100

can integrate planning and diagnosis capabilities, with each101

action represented as a node whose evaluation reflects the ac-102

tion’s execution status. Within the framework, behavior trees103

function as deterministic policies that observe the world and104

initiate appropriate actions. Figure 1 illustrates an example105

behavior for monitoring and adapting a plan in execution. In106

the example, blue nodes have the following behavior:107

• → (and) evaluates to:108

– success if all its children evaluate to success,109

– failure if at least one node evaluates to failure, and110

– running if at least one node evaluates to running111

while none evaluates to failure.112

• ? (or) evaluates to:113

– success if at least one child evaluates to success,114

– failures if all children evaluate to failures, and115

– running if at least one child evaluates to running116

and none evaluates to success.117

Figure 1: Example Behavior Tree

The key advantages of behavior trees include verifiability,118

human-readability, and visualization capabilities, providing a119

common platform for sharing architectural concepts and do-120

main knowledge among stakeholders.121

Within a framework, a behavior tree can be seen as a (de- 122

terministic) policy that observes the world with each tick of 123

the tree and may send actions, such as “Plan.” Planning can 124

be a subproblem itself, implemented as a policy through a 125

solver that takes state, actions, and a goal to develop a plan 126

for execution. 127

Behavior trees are verifiable, human-readable, and easy to 128

visualize. They provide a common ground for sharing ideas, 129

architectures, and domain knowledge among domain experts, 130

product managers, and AI systems. 131

3 Methodology 132

Learning a single end-to-end model is rarely computation- 133

ally feasible. Instead, end-to-end models are typically com- 134

posed of multiple heterogeneous models, some of which are 135

machine-learned while others are human-built using AI and 136

operations research modeling techniques. The system and 137

methods described in this paper support the design, devel- 138

opment, and deployment of these composite AI systems. 139

The system goal is the automated assembly of data con- 140

nectors, domain and goal-based problem models, computa- 141

tional services (e.g., solvers, reasoners, large-language mod- 142

els, etc.), and appropriately configured control nodes (logic- 143

gated demultiplexers, multiplexers, and pass-through using 144

data and model knowledge) using a graph-based organization 145

into a service supported by an externally interfacing API that 146

can be plugged into a target system for automation as a Com- 147

posite AI system. The Composition Framework shown in 148

Figure 2 illustrates an abstract graph of the principal compo- 149

nents in making compositions (the blue parts). Online and/or 150

offline data is brought into the system and adapted for dis- 151

tribution to one or more models organized into one or more 152

stages. Novel control nodes can flexibly be configured to dis- 153

tribute data into and out of model in to, between, and out 154

of stages. As shown, some models require computational 155

pipelining. At the end of all stages the composition produces 156

output. This composite core is wrapped in a service API and 157

designed for deployment in a container or set of containers to 158

provide the configured service both in a testing and produc- 159

tion environment. 160

3.1 Online and Offline Data Connectors 161

When building real-time intelligent services, it is necessary to 162

process both offline and online data. Offline data, which are 163

typically used for model learning, can be quite large and are 164

not significantly constrained by processing time. In contrast, 165

online data are expected to arrive in real-time when the ser- 166

vice is deployed, and the results of processing the real-time 167

data are going to be produced and published by the service. 168

While the connectors are critical components of the plat- 169

form and composed services, the implementation effort has 170

already been invested in by several open-source data con- 171

nectors, such as Airbyte [Airbyte, 2023]. The system builds 172

upon an existing framework of connectors developed by oth- 173

ers and extends their functionality by adding preprocessing 174

data transformations relevant to learning and/or deploying the 175

models. 176



Figure 2: Composition framework. Each control node is unique being configured for their specific
downstream components through introspection or manually, but use a common code base.

3.2 Models177

The core workers in a composite AI system are the mod-178

els. Models may be pre-trained with data, augmented with179

new data, learn from zero using new data, or only algorith-180

mic in nature (i.e., a technique). When models need to be181

augmented or developed from the ground up then the model-182

specific techniques apply such as Automated Domain-driven183

Model Synthesis [Balyo et al., 2024]. By applying various184

filters and transformations to a dataset ingested from a data185

connector, the system (optionally aided by a user) can define186

the state space or other features, which are then used to learn187

the model. The same dataset can be used to define state spaces188

or inputs for multiple different modeling approaches. For ex-189

ample, we can model a predictive task as a dependency of the190

engine temperature on speed, road incline, and total weight,191

while simultaneously modeling vehicle logistics using classi-192

cal planning [Ghallab et al., 2004].193

3.3 Computational Services194

Some models require computational support to execute. For195

example, a planning model needs to be run through a solver196

with a problem specification. A GPT (Generative Pre-trained197

Transformer) model needs to have its weights loaded into the198

configured transformer architecture and be run with a prob-199

lem prompt. One case study of the system supports model-200

ing with classical planning using machine learning [Dvorak201

et al., 2021], as well as constraint modeling using CP-SAT202

in [Google, 2022] and machine learning [LeDell and Poirier,203

2020].204

3.4 Control Nodes: Logic-Gated Multiplexers,205

Demultiplexers, and Pass-throughs206

The key to creating complex composite AI systems is pro-207

viding a control mechanism to combine, select, transform,208

deconstruct, and configure how the data flows into and out of209

the models in each stage until final output. Each control node210

is configured to marshal the data into or out of a set of models 211

and configure it as required using the following configuration 212

elements. 213

1. Permeability: Defines how data flows through the gate. 214

(a) Fully permeable: Data is a complete pass-through 215

to one or more models downstream. 216

(b) Partially permeable: Data is a partial pass-through 217

to one or more models downstream and may be 218

combined, selected, or transformed before being 219

passed to the model(s). 220

(c) Impermeable: Data is not passed-through and will 221

be combined, selected, or transformed before being 222

passed to one or more models downstream if at all. 223

2. Combination: Define how inputs are combined before 224

being passed to one or more models downstream. 225

3. Selection: Define how selected inputs are passed to one 226

or more models downstream if at all (e.g., filtered). 227

4. Transformation: Define how inputs are altered before 228

being passed to one or more models downstream. 229

5. Downstream Model Configuration: Define specific 230

model configurations for each model as needed for each 231

input. For example, each input into a LLM may specify 232

some specific hyper-parameters associated for process- 233

ing the input. 234

6. Orchestration: Defines conditions of received outputs 235

and when/how to proceed in processing. Orchestra- 236

tion may only require a few responses instead of all re- 237

sponses from a set of upstream models before proceed- 238

ing. It may require specific properties to the responses 239

before proceeding. However, it should never perma- 240

nently halt processing and any resolutions needed to pro- 241

ceed should be able to be kicked off by the gate. 242

In a typical case study as shown in Figure 3, the control 243

node is implemented in a computer programming language 244



into four areas of functionality. Data comes into a Data245

Combination, Selection, and Transformation Logic compo-246

nent that applies logic rules to the incoming data to combine,247

select (filter in or out), and transform the data as specified.248

A Model Configuration and Orchestration Logic component249

receives information about the models it can use and is con-250

figured through logic rules on how to set up, execute, and251

orchestrate the downstream models. These two components252

may share information that informs logic rules for processing.253

The Data to Model component provides the data to the ap-254

propriate downstream component(s), which may be the sys-255

tem output. The Model Control component configures the256

downstream models, if they exist, and kicks off their opera-257

tion as defined by the logic rules. Control Nodes are aware258

through introspective or manual configuration of their down-259

stream components and parameters. Control nodes always260

have incoming data and should have some outgoing data but261

may not have any model input or control. Any logical speci-262

fication system can be used to implement a control node.263

Figure 3: Control Node Architecture

One example of how control nodes are used in a stage is264

to reduce LLM hallucinations, generated incorrect or fabri-265

cated information, by passing the same prompt into each of266

a set of LLM models (e.g., ChatGPT, Llama, and Gemini) in267

parallel. The outputs are then transformed into an intersect-268

ing set so that only outputs that are in fuzzy match are passed269

to the next stage. Information that is not the same in each270

response is filtered reducing inconsistent aspects, which are271

often manifested as LLM hallucinations.272

Control nodes can output to other control nodes and be273

nested in model flows as shown in Figure 1. Control nodes fit274

neatly into the system graph as nodes before and after models275

and model processing nodes. Most times system control is276

best defined as a DAG or BT, but in some case studies a di-277

rected graph may be used with cycles. These cycles typically278

specify a loop between control nodes so that information may279

be processed multiple times by the same set of models.280

Compositions may be designed to operate under various281

modalities. One common set is the train and test (i.e., learn282

and perform, explore and exploit). Control nodes can be spec-283

ified with different logic configurations to support each de-284

sired mode of composition usage (e.g. using environmental285

variables).286

4 Architectural Solution Composition 287

Architectural Solution Composition in practice involves 288

building a graph (behavior tree in this example) that com- 289

bines multiple models with corresponding solvers, goals, and 290

APIs into a service. 291

Although the models share a single observation space, each 292

model only considers its own local state space. Each model 293

can be tied to a computation service (e.g., solver), which may 294

continuously work on problem instances generated from the 295

observations whenever it is triggered. The system can use 296

any type of software defined computation services including 297

planning solvers in the Unified Planning Framework [Micheli 298

et al., 2025] and the wide range of AI techniques. 299

We often encapsulate reasoning and action execution into 300

the nodes of a behavior tree providing the grounds to define a 301

composed automated reasoning, planning, and execution sys- 302

tem in terms of tree composition. The tree composition is an 303

operationalization of multiple models together with the corre- 304

sponding solvers, actors, goals, and APIs into a service. Any 305

two or more models in a composition are related either by 306

1. nesting (hierarchical), when one model is fully nested 307

within another, and the subsystem operating with the 308

outer model can invoke the subsystem operating the in- 309

ner model, 310

2. precedence or chaining (sequential), when a subsystem 311

for the earlier model can be fully executed before run- 312

ning the subsystem for the later model, or 313

3. concurrent (interleaving and/or parallel), when subsys- 314

tems for both models can run concurrently and interfere 315

with each other, for example by exchanging their best 316

solutions. 317

These three model composition approaches are available 318

to the solution architect through the control nodes, and it is 319

upon the architect to design a composition appropriate for the 320

given real-world problem. The models share a single obser- 321

vation space, the control nodes picking only the data relevant 322

for them (e.g., in a food delivery system example, vehicle 323

routing with time windows precedes running a planner). We 324

first produce optimal assignments of orders to drivers, which 325

is equivalent to adding control knowledge to the more general 326

planning problem, which is solved consequently. We consider 327

each model to be tied with a computational service subsystem 328

as appropriate (e.g., plan with a planner, problem solve with a 329

solver), which keeps solving the problem instances generated 330

from the observations every time it is triggered. 331

The concept of model composition in the system is another 332

tool typically provided to the solution architect user. If de- 333

sired, the user can build and compose models to guarantee 334

optimal solutions. There can also be cases when optimality 335

is infeasible or not desired, and the goal is to find solutions 336

quickly with a reasonable distance from optimality. 337

Service code can be generated by introspectively filling out 338

template code of various components of the composition, or 339

by configuring pre-build services (e.g., using JSON configu- 340

ration files, environment variables, or API calls). In imple- 341

mentation there typically exists a code/service template for 342

every type of composition node. The solution is composed of 343



a main orchestration service, that contains knowledge about344

all the components in the composition. The individual nodes345

are either directly part of the orchestration service, in case346

of simple nodes, or the orchestration service has lightweight347

proxy wrappers for a dedicated microservice that are logically348

part of the composition. The orchestration service communi-349

cates with the microservice using this proxy and can either350

directly fetch and push data to it via this proxy or can use it to351

configure the wrapped service to specify data inputs and out-352

puts. Individual nodes are decoupled, language-independent,353

and are flexible to be able to be part of a wide range of com-354

positions.355

All the parts of the solution templates, including the or-356

chestration service and all the engineered packages should357

be packed into container technology (i.e., Docker) by design.358

After code generation, all that is needed is to execute the al-359

ready created build commands to create the containers and360

service manifest. These containers then can be easily ver-361

sioned, duplicated, and deployed either locally or to a cloud362

solution, and can be used in various environments, such as363

testing, staging, demo, or production.364

The Filuta AI system implements all of these aspects into a365

commercial platform used to provide solutions to real-world366

problems such as video game quality assurance evaluations.367

5 Deployment368

Deploying services produced by the system is a push-button369

action for the user. It involves a cloud-agnostic or computa-370

tional platform deployment of containerized microservices at371

the backend. Once deployed, users can monitor the deploy-372

ment status and interact with it at the defined network address373

through the API defined in the composition.374

Final deployment also contains implicit and explicit tools375

and services not directly part of the data pipeline. These ser-376

vices allow us to incorporate functional and non-functional377

requirements to the solution, such as High Availability, ex-378

tensive monitoring and logging capacities, authorization, and379

authentication mechanisms. Tools such as monitoring are im-380

plicitly part of every deployment and are not visualized in the381

Composition UI representation. An example of explicit sup-382

porting tools is the High Availability Service that will deploy383

the Composition multiple times in multiple regions to serve384

as a failback if one instance fails, to allow faster and more385

scalable usage for customers from different regions, or for386

many customers in one place.387

Deployed services can be used in two separate ways:388

• Dedicated for a composition to which they belong389

• Distributed across multiple service environments, cus-390

tomer solutions, or even multiple customers.391

Dedicated services are, for example, models dependent on392

the environment where they are used or if the customer wants393

dedicated services running for them. Distributed services can394

be either shared data sources that are the same for all the cus-395

tomers, for example a weather service, or resource-heavy ser-396

vices that would be cost prohibitive to use for a single deploy-397

ment, such as an LLM service. Customer isolation is always398

guaranteed by the solution either by using dedicated services399

or by not sharing context in the distributed services.400

Composition is the core part of a complete system as shown 401

in Figure 4 with four main components: 402

1. Model Editor allows the expert user to define data inputs, 403

and how they are transformed into an ingestible format. For 404

example, tabular data for predictors/ML models, or time se- 405

ries for symbolic models. It then provides a way to plug those 406

connectors/transformers into an ML or symbolic modeling 407

approach. It is possible for the expert user to interactively 408

adjust and augment the proposed model until they are satis- 409

fied with its quality. This could mean accuracy for ML, or 410

human-check and test validation against input data for sym- 411

bolic models. 412

Models are used in Compositions and have the following 413

properties: 1) Defined input specifications, 2) Defined output 414

specifications, 3) Defined model configuration parameters, 4) 415

Defined model controls, 5) Defined computation and mem- 416

ory requirements, and 6) Characterization of performance on 417

data. 418

2. Composition Editor takes multiple models and offers di- 419

verse options to combine them using control nodes to imple- 420

ment a graph that can be executed as a DAG, behavior tree, 421

or other forms as well as using data connectors to provide 422

shared observation space. The editor encodes both the de- 423

composition of the mathematical structure representing the 424

real-world problem and the operationalization of the model 425

with the behavior of a general agent. This feature allows for 426

quick iteration, learning, and versioning of agents that pro- 427

vide intelligent automation services. The editor also specifies 428

I/O. 429

The building blocks of a composition are explicitly ver- 430

sioned to support breaking changes—if one service changes 431

their API and other dependent service needs to adjust, the 432

system can keep one composition that contains services that 433

have not adjusted yet on an old version and another composi- 434

tion that already has all the changes incorporated at a newer 435

version. This also supports falling back to older versions if 436

needed, rolling out features gradually, and other cases where 437

explicit versioning supports better system management. 438

The building blocks are used in case studyies to 1) con- 439

struct the behavior tree or other executable graph in Python 440

(or another OOP language based on customer needs, such 441

as C++ for game testing integrations) and 2) list the deploy- 442

ment requirements of the components necessary to run the 443

composition. The behavior tree represented by the composi- 444

tion in a case study has shown to be a low-latency (1-5ms), 445

minimal-computation tree structure that constantly runs when 446

deployed and manages the other components (containers) 447

considered to be serviced in this interaction. 448

3. Simulation Testing Manager deploys compositions by 449

mapping them into a simulation representative of the target 450

system. Control of the simulation can run the composition 451

through testing phases with the simulated system under any 452

type of definable conditions. 453

4. Deployment Manager deploys compositions by mapping 454

them 1:n into running instances, each with its own config- 455

uration and connected to a target system. For example, we 456

can assign a location (e.g., DNS name or IP number) and 457

an authentication token as minimal configurations. The de- 458

ployment manager continually monitors, terminates, and pro- 459



Figure 4: An end-to-end system for Specification, Codification, and Deployment of Composite AI Systems

vides other features expected from cloud-deployed services460

with minimal downtime.461

Composite AI systems are designed to be system-462

agnostic—they function the same way regardless of whether463

they’re connected to the actual target system or a simulation464

of it. For testing purposes, users can connect their composi-465

tions to existing simulators (if available) or use configurable466

generic simulators that mimic the target system’s behavior.467

6 Target System Application468

We describe an approach for building a general hierarchical469

autonomous control architecture using a composition. The470

approach combines well-known techniques from satisfiability471

theory, automated planning, automated diagnosis, constraint472

programming, reinforcement learning, and behavior trees.473

A user provides a target system that accepts actions and474

provides a perception of it and its world’s state. The user475

works with the backend system through a user interface to476

configure one or more domain models and a composite sys-477

tem of AI-based components organized by a graph (e.g., be-478

havior tree) running through tests and deployment to solve479

problems through action-space control.480

As a running example, we will describe the components of481

a specific case study of this system that has been set up to482

solve the Towers of Hanoi game as the target system. The483

Towers of Hanoi is a puzzle game that involves moving discs484

from one place to another. Imagine you have n rods, where485

n is typically three, and a stack of different-sized discs. The486

goal is to move all the discs from one rod to another, fol-487

lowing a few rules. First, you can only move one disc at a488

time. Second, you can never put a bigger disc on the top of489

a smaller one. And third, you can use the other rods to help490

you move the discs around, but you can only place a disc on491

top of another disc or on an empty rod.492

The deployed composition contains two complementary493

models: a symbolically trained Towers of Hanoi Model that494

captures domain knowledge in PDDL format, and a Rein-495

forcement Learning (RL) Move Evaluator trained on histori-496

cal gameplay data to predict move quality scores. The models497

were learned by taking raw logs from a system, an expert’s498

domain knowledge, existing domain knowledge (e.g., exist-499

ing PDDL descriptions), and other sources that provide do- 500

main knowledge through capture collecting into a knowledge 501

base. Knowledge capture primarily involves preparing a set 502

of predicates that describe the domain under interest follow- 503

ing any method of knowledge capture from a consultant or 504

domain expert. A predicate is a function of a set of parame- 505

ters that returns a Boolean as an answer. The knowledge base 506

may also contain a description of predicates and their mean- 507

ing extracted from the target system’s raw logs. Predicates 508

apply to a specific type of object, or to all objects. Predicates 509

are either true or false at any point in a plan and when not 510

declared, they are assumed to be false. In our running exam- 511

ple, the knowledge base may contain information such as the 512

definition of useful predicates: discONdisc(disc1, disc2) 513

means disc1 is on disc2, smaller(disc1, disc2) means disc1 514

is smaller than disc2, discClear(disc1) means disc1 is on 515

the top and nothing lies on it. It may also define the goal to 516

be achieved, such as all discs lie on the last rod, composed of 517

predicates that are all true (e.g., discONrod(disc1, rod3), 518

discONrod(disc2, rod3), and discONrod(disc3, rod3)). 519

It may also define the initial state of the problem using predi- 520

cates that describe the input scenario and all combinations of 521

disc and their sizes and location. 522

Information from the target system flows into and out of 523

the deployed composition through the data connectors. This 524

takes perception data from the external world state of the sys- 525

tem or other systems that may accurately report data from 526

the environment of the target system. This could be any ex- 527

ternal information relevant to the domain of interest, such as 528

weather, traffic conditions, general knowledge from the outer 529

world, etc. The target system may provide telemetry or op- 530

erational logs, such as a raw stream/batch of data collected 531

from system components. For our running example, keys 532

pressed in the game by a human player. The composition 533

output data connector transmits action information to the sys- 534

tem—transformed planned actions that lead to actual system 535

change. In the planned action for our running example, an ac- 536

tion can be MoveDiscFromRodToRod, which translated 537

to the target system can mean ”press arrow up, press arrow 538

left, press arrow left, press arrow left, press arrow down” as a 539

sequence of virtual keyboard key presses. 540

A data connector takes in data in some form, digests 541



the data from the source (e.g., document, Google Drive,542

SFTP, stream, websocket, Parquet, AWS), and passes it in543

a defined structured data format to be processed by other544

entities. In our running example, this could involve using545

Keboola or some data platform to interchange data from the546

user’s game into a format defined by the predicate store. The547

configuration may include format specifications, connectors,548

logins, secrets, etc. A data connector takes in predicate549

definition raw data, and transforms it given the predicate550

definition creating predicates from the input log stream. In551

our running example, Rod1 = [disc3, disc2] is converted552

to discONrod(disc3, rod1), discONrod(disc2, rod1),553

discONdisc(disc2, disc3), smaller(disc2, disc3),554

discClear(disc2).555

Within the deployed composition, the PDDL model pro-556

vides guaranteed valid moves and optimal planning capabili-557

ties, while the RL model contributes learned heuristics about558

move efficiency and common solution patterns. The input559

data connector passes state information into a partially per-560

meable control node that implements sophisticated orchestra-561

tion logic. This control node transforms the raw game state562

into two formats (PDDL predicates for the planner and fea-563

ture vectors for the RL model), orchestrates parallel execution564

of both models, combines outputs by using the planner’s valid565

moves as candidates and the RL model’s scores to rank them,566

and selects the highest-scored valid move as output, falling567

back to the planner’s first suggestion if RL scoring fails.568

A data connector takes information from the composition569

output and converts it to an action description with param-570

eters, which describes actions to be executed in the target571

system to achieve the desired goal. In our running example,572

something like move(d1, d2, d3) means to move disc1 from573

disc2 to disc3. The output data connector interfaces with the574

target platform to execute all action commands on that plat-575

form, thus affecting the state through action.576

The testing and deployment user-interface is the front-577

end, interactive tool that works with the user. The interface578

again consists of four main parts as illustrated in Figure 4:579

1. Model development using a text-based language aug-580

mented by a visual programming language. In one case study,581

the modeling language is PDDL text and Blockly provides a582

visual builder. The user iteratively refines the model through583

testing and deployment in a digital simulation of the target584

system and/or the target system. Model debugging tools also585

provide insight and feedback for iterative refinement.586

Models may be completely synthesized from raw observa-587

tional data using a method such as the Automated Domain-588

driven Model Synthesis [Balyo et al., 2024]. The interface589

tools can then be used to manipulate, edit, add, and remove590

actions within the synthesized model. The goal is a model591

containing information from domain synthesis on which ac-592

tion to use or not to use for control with the target system.593

User augmentation may refine the model and improve under-594

standability by renaming predicates, goals, and actions.595

2. Composition development using a text-based language596

augmented by a visual programming language. In one case597

study, the composition language is text describing a behavior598

tree and Blockly provides a visual builder. A behavior tree vi-599

sualizer also provides additional insights. The user iteratively600

refines the composition and model(s) through testing and de- 601

ployment in a digital simulation of the target system and/or 602

the target system. Composition debugging tools also provide 603

insight and feedback for iterative refinement. 604

The goal is given one or more models, data connectors, and 605

control nodes, structure the composition workflow in a way 606

that all components cooperate and achieve the desired system 607

performance. 608

In our example, the composition obtains the puzzle state, 609

then orchestrates both the PDDL planner and RL evaluator 610

through a control node to generate optimally-ranked move se- 611

quences, which are executed on the target game. 612

3. Simulation testing provides pre-deployment feedback on 613

the composition and underlying models in action. 614

4. Deployment provides the ability to push control by the 615

composition to the target system. This includes live perfor- 616

mance monitoring of the system in action and supports defin- 617

ing and observing performance through evaluation metrics. 618

The Deployed Model Runtime takes the deployment 619

setup, description of container images, image registry, rele- 620

vant services, external endpoints, API’s, data locations, and 621

the input stream of target system predicates to deploy the 622

model on a cloud-based platform. It can also run on any com- 623

pute platform. It will run services and let them communicate 624

according to description given by composition and ingest in- 625

put data (pre-processed predicates) and output data (actions 626

that lead to goal). The system output is a stream of actions 627

to be executed on the target system. It is up to the target 628

system to make the actions happen in the real world given 629

action input. In our running example, this system could be 630

a low-level Azure cloud deployment configurations of indi- 631

vidual composition components (planner, data store, serving 632

APIs), networking and interoperability settings, VPNs, con- 633

tainer registry settings, endpoints definition, etc. needed to 634

startup and execute a composed AI system to play the Towers 635

of Hanoi. 636

7 Conclusion 637

In conclusion, this paper presents a comprehensive frame- 638

work for Composite AI systems that effectively integrates 639

multiple AI techniques to solve complex real-world prob- 640

lems. The graph-based architecture, featuring specialized 641

control nodes, enables the orchestration of diverse models 642

including planning, machine learning, constraint program- 643

ming, and large language models within a unified operational 644

schema. By supporting hierarchical, sequential, and con- 645

current model composition patterns, the system overcomes 646

the limitations of single-model approaches while providing 647

flexible deployment options through containerization. The 648

methodology encompasses data connectors, computational 649

services, and control mechanisms that together form a power- 650

ful platform for designing, testing, and deploying intelligent 651

automation services. As demonstrated through case studies 652

like the Towers of Hanoi example, this approach enables the 653

creation of robust composite systems that can observe, rea- 654

son about, and act upon complex environments, representing 655

a significant advancement in applied AI for industrial appli- 656

cations. 657



References658

[Airbyte, 2023] Airbyte. Reflecting on 2023 (and what’s in659

store for 2024), 2023.660

[Balyo et al., 2024] Tomáš Balyo, Martin Suda, Lukáš661

Chrpa, Dominik Šafránek, Stephan Gocht, Filip Dvořák,662

Roman Barták, and G Michael Youngblood. Planning do-663

main model acquisition from state traces without action664

parameters. arXiv preprint arXiv:2402.10726, 2024.665

[Dvorak et al., 2021] Filip Dvorak, Anil Agarwal, and Niko-666

lay Baklanov. Visual planning domain design for pddl us-667

ing blockly. In ICAPS 2021 Demonstrations, Sugar Land,668

TX 77478, United States, 2021. Schlumberger.669

[Floridi and Chiriatti, 2020] Luciano Floridi and Massimo670

Chiriatti. Gpt-3: Its nature, scope, limits, and conse-671

quences. Minds and Machines, 30:681–694, 2020.672

[Gartner, 2022] Gartner. What’s new in artificial intelligence673

from the 2022 gartner hype cycle, 2022.674

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo675

Traverso. Automated Planning: Theory and Practice. The676

Morgan Kaufmann Series in Artificial Intelligence. Mor-677

gan Kaufmann, Amsterdam, 2004.678

[Google, 2022] Google. Or-tools - google optimization679

tools, 2022. Google’s software suite for combinatorial op-680

timization.681

[LeDell and Poirier, 2020] Erin LeDell and S. Poirier. H2o682

automl: Scalable automatic machine learning. In Pro-683

ceedings of the AutoML Workshop at ICML, volume 2020,684

2020.685

[Micheli et al., 2025] Andrea Micheli, Arthur Bit-Monnot,686

Gabriele Röger, Enrico Scala, Alessandro Valentini, Luca687

Framba, Alberto Rovetta, Alessandro Trapasso, Luigi688

Bonassi, Alfonso Emilio Gerevini, Luca Iocchi, Felix In-689

grand, Uwe Köckemann, Fabio Patrizi, Alessandro Saetti,690

Ivan Serina, and Sebastian Stock. Unified planning: Mod-691

eling, manipulating and solving ai planning problems in692

python. SoftwareX, 29:102012, 2025.693


	Introduction
	Graphs
	Directed Acyclic Graph (DAG)
	Behavior Trees (BT)

	Methodology
	Online and Offline Data Connectors 
	Models
	Computational Services
	Control Nodes: Logic-Gated Multiplexers, Demultiplexers, and Pass-throughs

	Architectural Solution Composition
	Deployment
	Target System Application
	Conclusion

