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Abstract

Large language models (LLMs) have shown con-1

siderable promise for interpreting structured data,2

yet their use on electric-vehicle (EV) time-series3

remains limited. We introduce a framework that4

fuses semantic-aware clustering with prompt engi-5

neering to produce diagnostic reports from high-6

dimensional EV battery logs. Central to our ap-7

proach is a Mixture-of-Agents (MoA) architec-8

ture in which several LLM-driven agents cluster9

the data from complementary perspectives before10

their outputs are unified into semantically coher-11

ent groups. These clusters then drive a few-shot12

prompting strategy for report generation. We eval-13

uate three prompting variants that supply progres-14

sively richer context, using the LLM-as-Judge pro-15

tocol. Experiments show that MoA yields higher16

silhouette scores than K-means, and that prompts17

enriched with same-cluster samples plus inferred18

cluster summaries deliver the most informative re-19

ports. The results highlight how combining seman-20

tic clustering with careful prompt design enhances21

both interpretability and quality of LLM outputs.22

This work provides a foundation for automated re-23

porting in real-world EV diagnostics.24

1 Introduction25

As the adoption of Electric Vehicles (EVs) accelerates, the26

volume and complexity of time-series data generated dur-27

ing vehicle operation, such as driving logs and battery state,28

continues to increase. However, this data is inherently high-29

dimensional and non-linear, and often reflects overlapping in-30

fluences from diverse driving conditions and environmental31

factors. These characteristics pose challenges for traditional32

statistical methods or rule based reporting systems, which33

often fail to capture complex patterns and anomalies effec- 34

tively [Li et al., 2019; Steinstraeter et al., 2020]. To ad- 35

dress these limitations, we propose a novel pipeline that clus- 36

ters EV time-series logs and generates diagnostic reports for 37

each cluster using a large language model (LLM). The sys- 38

tem first clusters preprocessed time-series data, then produces 39

situation-specific reports for each cluster through LLM-based 40

few-shot prompting. 41

Traditional clustering methods such as K-means suffer 42

from instability and poor separation due to their sensitivity 43

to initial conditions and fixed partition criteria. To overcome 44

these limitations, we adopt a Mixture of Agents (MoA) ar- 45

chitecture [Wang et al., 2024], where multiple LLM based 46

agents independently generate clustering proposals based on 47

different feature subsets or prompting perspectives, and a fi- 48

nal aggregation determines the outcome. This structure en- 49

sures robust and consistent clustering, even across repeated 50

runs. Clustering is performed using key features relevant 51

to battery behavior, such as average speed and tempera- 52

ture rise (∆T ), and representative samples from each clus- 53

ter are used as few-shot exemplars in prompts, allowing 54

the LLM to generate high-quality reports without additional 55

training. Such prompting strategies have been proven effec- 56

tive in tasks such as industrial summarization, fault diagnosis, 57

and process monitoring [Chen et al., 2025; Ning et al., 2023; 58

Pu et al., 2024]. 59

To evaluate report quality, we adopt a win/tie/lose com- 60

parative judgment scheme inspired by MT-Bench [Zheng et 61

al., 2023], where two reports are presented side-by-side and 62

assessed by an LLM judge. Experimental results show that 63

our MoA based clustering achieved a 43.5% improvement 64

in Silhouette Score over K-means, and our most comprehen- 65

sive prompting strategy incorporating same cluster samples 66

and LLM-derived cluster descriptions attained a win rate of 67

67.22% over baseline. 68

Our contributions are threefold: 69

• A pipeline is proposed that clusters EV time-series data 70



Figure 1: Proposed Method: Baseline K-means Pipeline vs. Proposed MoA-Driven Clustering and Prompting Framework for EV Battery
Report Generation.

using key battery-related features and produces clus-71

ter level diagnostic reports through few-shot prompting72

with a LLM.73

• To improve clustering quality, a MoA is introduced,74

wherein multiple agents generate clustering candidates75

from different perspectives. Its effectiveness over K-76

means is validated through comparative evaluation.77

• We assess report quality using a win, tie or lose judg-78

ment framework and show that our prompting method79

consistently yields higher-quality outputs.80

2 Related Works81

2.1 Time-Series Data Analysis82

Time-series data inherently possesses multi dimensional at-83

tributes. Among unsupervised analysis methods for such84

data, clustering is one of the most commonly used ap-85

proaches, with the K-means algorithm being the most preva-86

lent due to its simplicity and computational efficiency. It87

is widely adopted in various time-series data analysis tasks.88

However, K-means has inherent limitations: it requires the89

number of clusters to be predefined, is sensitive to initial90

centroid placement, and relies on distance-based partitioning,91

which makes it inadequate for capturing complex non-linear92

structures or interactions among high-dimensional features.93

These limitations are particularly pronounced in EV log data,94

where heterogeneous time-series patterns arise from diverse95

driving conditions and user behaviors.96

Tayarani et al. pointed out that traditional clustering meth- 97

ods such as K-means struggle to represent the complexity 98

of EV charging behavior [Tayarani et al., 2023]. Similarly, 99

Ke and Wang demonstrated that segmenting and process- 100

ing time-series data from multiple perspectives, rather than 101

a single criterion, can significantly enhance prediction accu- 102

racy and flexibility [Ke and Wang, 2024]. This perspective 103

is structurally aligned with the philosophy behind the MoA 104

approach proposed in our work, which leverages LLMs for 105

multi-perspective clustering. 106

2.2 Time-Series Data with LLM 107

LLMs have recently been applied with increasing frequency 108

to interpret or summarize time-series data in natural lan- 109

guage. In previous studies showed that by converting numeri- 110

cal time-series into character token sequences, LLMs can per- 111

form even zero-shot forecasting tasks [Gruver et al., 2023]. 112

Hegselmann et al. proposed a method that serializes tabular 113

data into textual form, enabling LLMs to perform classifica- 114

tion and summarization tasks on otherwise structured input 115

[Hegselmann et al., 2023]. These studies suggest that LLMs 116

are capable of understanding non-standard input formats and 117

generating domain-specific responses. 118

In such tasks, performance is heavily influenced by how 119

structured data is transformed and fed into LLMs. Recently, 120

semantically relevant example selection for few-shot prompt- 121

ing has emerged as a dominant strategy [Achiam et al., 2023; 122

Gruver et al., 2023]. For instance, Mohan et al. demonstrated 123

significant improvements in named entity recognition (NER) 124

within the medical domain by selecting few-shot exemplars 125



via K-means clustering [Mohan et al., 2024]. Inspired by126

these approaches, our study extends this few-shot prompting127

methodology to the EV time-series domain.128

2.3 LLM as a Judge129

When evaluating outputs generated by language models, tra-130

ditional quantitative metrics (e.g., BLEU, ROUGE) are of-131

ten insufficient to capture expressive diversity and multi-132

dimensional quality. As a result, comparative evalua-133

tion methods especially those simulating human level judg-134

ment have gained attention. A representative example is135

MT-Bench, proposed by Zheng et al., which employs a136

win/tie/lose evaluation scheme by presenting two responses137

side-by-side and asking either an LLM or a human to choose138

the better one, or declare a tie [Zheng et al., 2023].139

Zheng et al. showed that GPT-4, when used as a judge in140

such evaluations, achieved an agreement rate of up to 85%141

with human annotators, thereby demonstrating the reliability142

of LLMs as qualitative evaluators. In our study, we adopt this143

evaluation framework to compare the quality of reports gen-144

erated from the same EV time-series input, using either MoA145

based or K-means based clustering. The relative quality of146

these reports is quantitatively assessed via pairwise compar-147

isons under the win/tie/lose scheme.148

3 Methodology149

We hypothesize that entropy loss, which often occurs when150

clustering high-dimensional time-series data using methods151

like K-means, can be mitigated by leveraging the semantic152

capabilities of LLMs. To this end, we propose a method that153

improves the transformation of structured time-series data154

into unstructured diagnostic reports, validated through a re-155

port generation task based on real-world EV battery manage-156

ment. Figure 1 provides an overview of both the baseline157

and our proposed pipeline. In the baseline (top), EV battery158

time-series data are clustered using K-means, followed by a159

prediction model that produces input for the LLM to generate160

the report.161

Each stage operates independently, and clustering results162

are not directly used in the report generation process. In con-163

trast, our method (bottom) adopts a MoA, where multiple164

agents with different criteria perform clustering in parallel.165

Their outputs are aggregated to produce a more stable and166

semantically meaningful cluster structure, marked with a fire167

icon (activated). From these clusters, a few-shot prompting168

context is constructed, while the LLM itself remains fixed and169

generates the report based on the given prompt, as indicated170

by a snow icon (frozen). We used the ‘gpt-4o’ and ‘claude-171

4’ LLM for both report generation and evaluation. This ar-172

chitecture enables tighter integration between clustering and173

prompting while ensuring stability in the generation stage.174

3.1 Clustering175

Traditional distance based clustering methods, such as K-176

means, face limitations when applied to high-dimensional177

time-series data due to fixed similarity metrics and sensitivity178

to initialization. Even techniques like dynamic time warp-179

ing (DTW) offer limited ability to capture domain specific180

semantics [Dhillon et al., 2004]. To address these shortcom- 181

ings, we adopt a MoA framework, which leverages the se- 182

mantic flexibility of LLMs to enable clustering from multiple 183

perspectives [Wang et al., 2025]. 184

The MoA framework comprises an Analysis Agent, mul- 185

tiple Worker Agents, and an Orchestrator that convert raw 186

battery logs and a user query into interpretable clusters of 187

SoC trajectories. MoA operates through three cooperative 188

modules. First, the LLM-driven Analysis Agent performs 189

automated feature attribution, selecting the variables (e.g., 190

voltage–current profiles, temperature, and internal resistance) 191

that exert the greatest influence on SoC and embedding them 192

in domain-specific prompt templates. Next, three Worker 193

Agents execute a two-layer clustering cascade. In Layer 1, 194

each agent explores the feature space using distinct distance 195

metrics, random initialisations, and hyperparameters, yield- 196

ing candidate partitions. In Layer 2, the Orchestrator eval- 197

uates internal and external validity indices, refines hyper- 198

parameters or cluster counts, and instructs the Workers to 199

re-cluster. Finally, the Orchestrator aggregates the revised 200

partitions into a consensus assignment that reconciles sta- 201

tistical structure with insights from battery science. This 202

pipeline produces clusters that both enhance downstream 203

SoC-prediction models and provide transparent explanations 204

of the battery attributes that define each group. 205

3.2 Report Generation 206

To generate unstructured diagnostic reports from structured 207

time-series data, we propose a prompting strategy tailored for 208

LLMs. Our method utilizes clustering results to incorporate 209

domain specific information into the prompt, enabling auto- 210

matic generation of EV battery management reports intended 211

for practitioners. Unlike traditional approaches that directly 212

convert structured data into text, our strategy actively lever- 213

ages the underlying cluster structure to improve both the in- 214

formativeness and consistency of generated reports. We de- 215

sign prompts with varying levels of cluster information and 216

empirically compare their effectiveness. Each prompt is de- 217

signed to help the LLM reason about how features such as 218

average speed, temperature rise, and HVAC usage affect SoC 219

consumption. The goal is to incrementally enhance the depth, 220

coherence, and factual relevance of the generated reports. 221

The full prompt texts are provided in Table 1. 222

• Basic: A report is generated using only the structured 223

input converted into JSON format. 224

• Ours (+cluster sample): In addition to the input, samples 225

from the same cluster are included. 226

• Ours (+cluster sample & info): Same cluster samples are 227

supplemented with LLM inferred cluster level descrip- 228

tions. 229

4 Experimental Results 230

4.1 Dataset 231

We employ real-world driving data from a publicly avail- 232

able BMW i3 dataset [Steinstraeter et al., 2020], compris- 233

ing 72 multivariate time-series sessions that capture battery 234

and thermal behaviour under diverse external and internal 235



Type Prompt

Basic

As a battery expert, you are a helpful assistant who can provide a detailed
and complete battery characterisation & management report based on
the EV characteristics data for a given drive.
You should consider how each feature affects SoC consumption, and make
sure to account for key features
(average speed, temperature rise, air conditioning/heater use, etc.).
This report should be helpful to practitioners of electric vehicle battery management.
Driving data: {test datapoint}

Basic+cluster sample

As a battery expert, you are a helpful assistant who can provide a detailed
and complete battery characterisation & management report based on the
EV characteristics data for a given drive.
You should consider how each feature affects SoC consumption, and make
sure to account for key features
(average speed, temperature rise, air conditioning/heater use, etc.).
This report should be helpful to practitioners of electric vehicle battery management.
Driving data: {test datapoint}
Data from the same cluster as the driving data: {same cluster datapoint sample}

Ours(Basic+cluster sample+cluster info)

As a battery expert, you are a helpful assistant who can provide a detailed
and complete battery characterisation & management report based on the
EV characteristics data for a given drive.
You should consider how each feature affects SoC consumption, and make
sure to account for key features
(average speed, temperature rise, air conditioning/heater use, etc.).
This report should be helpful to practitioners of electric vehicle battery management.
Driving data: {test datapoint}
Data from the same cluster as the driving data: {same cluster datapoint sample}
Cluster properties: {cluster info from LLM}

Table 1: Prompts used in the report generation pipeline.

Feature Unit Description

Battery Temperature °C Internal battery pack temperature (sensor reading)
State of Charge (SoC) % Percentage of remaining battery capacity
SoC Difference % SoC change between session start and end
Ambient Temperature °C External air temperature (sensor reading)
Target Cabin Temperature °C Desired interior temperature set by driver
Distance km Total driving distance during session
Duration min Total driving time during session

Table 2: Summary of dataset features used for clustering and analysis.

Trip Date Route/Area Weather Batt Temp (Start) Batt Temp (End) SoC (Start) SoC (End) SoC Diff Ambient Temp Cabin Temp Distance [km] Duration [min] Fan

TripA01 2019-06-25 13-21-14 Munich East sunny 21.0 22.0 0.863 0.803 0.060 25.5 23.0 7.43 16.82 Auto, L1
TripA02 2019-06-25 14-05-31 Munich East sunny 23.0 26.0 0.803 0.673 0.130 32.0 23.0 23.51 23.55 Auto, L1

. . . (more rows follow)

Table 3: Trip data example.

conditions. Key features such as battery temperature, state236

of charge (SoC), SoC variation, ambient and cabin temper-237

atures, trip distance, and trip duration, characterise battery238

performance and energy consumption. They serve as inputs239

for both clustering and report generation, as summarised in240

Table 2. dataset example is Table 3.241

4.2 Clustering Accuracy 242

The proposed MoA based clustering model is compared with 243

the conventional K-means algorithm on battery data using key 244

feature subsets. Cluster quality is evaluated via the silhouette 245

score, which measures intra-cluster cohesion (how closely 246

points group together) and inter-cluster separation (how far 247



Cluster Information

A

Short range, low SoC consumption
- Features: Short trips, low SoC consumption, low battery temperature variation
- This cluster consists of trips with short distances and low SoC consumption.
- It is mainly composed of vehicles used for short trips in the city centre or for commuting.

B

Medium range, medium SoC consumption
- Features: Medium mileage, medium SoC consumption, medium battery temperature variation
- This cluster consists of trips with medium range and medium SoC consumption.
- The battery temperature variation is also moderate. It mainly includes trips outside or near city centres.

C

Long range, high SoC consumption
- Features: Long range, high SoC consumption, large battery temperature fluctuations
- This cluster consists of trips with long distances travelled and high SoC consumption.
- The battery temperature variation is also large. It mainly includes long distance driving or highway driving.

Table 4: Cluster information as delimited by MoA.

Figure 2: Baseline K-means Pipeline vs. Proposed MoA-Driven Clustering and Prompting Framework for EV Battery Report Generation.

Prompts

Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question below.
You should choose the assistant that better follows the user’s instructions and answers the question.
Your evaluation should consider factors such as
helpfulness, relevance, accuracy, depth, creativity, and level of detail.
Begin your evaluation by comparing the two responses and provide a short explanation.
Avoid any position biases and ensure that the response order does not influence your decision.
Do not let the length of the responses affect your evaluation.
Do not favor specific assistant names. Be as objective as possible.
After your explanation, provide your final verdict in this format:
”A” if assistant A is better, ”B” if assistant B is better, and ”C” for a tie.
Report A: {Report A} \n\n Report B: {Report B}

Table 5: Prompts used in the judgement.



Judge LLM Model Comparison Model Win Tie Lose

GPT-4o(20240718) Ours(+cluster sample & info) Basic 67.22 18.89 13.89
Ours(+cluster sample) Basic 62.22 19.44 18.33
Ours(+cluster sample) Ours(+cluster sample & info) 31.11 32.22 36.67

Claude-sonnet-4(20250514) Ours(+cluster sample & info) Basic 77.22 1.1 21.67
Ours(+cluster sample) Basic 71.67 2.2 26.11
Ours(+cluster sample) Ours(+cluster sample & info) 16.67 36.67 47.22

Table 6: Pairwise MT-Bench Evaluation of Prompting Variants.

they are from neighboring clusters). This provides a quantita-248

tive measure of how well each point fits within its cluster and249

how distinct it is from others.250

To compute the score, the average intra-cluster distance251

a(i) is calculated for each data point i, where j denotes an-252

other sample, d(i, j) is the Euclidean distance between points253

i and j, C is the cluster to which i belongs, and C ′ is a cluster254

that does not contain i. The separation b(i) is computed as255

the minimum average distance to points in the nearest neigh-256

boring cluster. The silhouette score s(i) is then defined as:257

a(i) =
1

|C| − 1

∑
j∈C
j ̸=i

d(i, j) (1)

258

b(i) = min
C′ ̸=C

1

|C ′|
∑
j ̸=C′

d(i, j) (2)

259

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3)

Figure 2 presents the clustering results based on real-world260

data, comparing the proposed model with the conventional K-261

means algorithm. When evaluated using the silhouette score,262

the MoA based clustering outperformed K-means by approx-263

imately 43.5%. This result demonstrates the effectiveness of264

the proposed MoA clustering method over the traditional K-265

means approach. Detailed characteristics of each MoA clus-266

ter are provided in Table 4.267

4.3 Report Judgement268

To compare the quality of reports produced by different269

prompting strategies, we adopt the MT-Bench framework270

with the LLM-as-Judge protocol. Reports generated under271

each of the three strategies are paired and scored by the LLM272

as win, tie, or lose. Because cluster statistics differ, each clus-273

ter (A, B, C) is evaluated independently with 60 held-out sam-274

ples, and response order is randomized to remove positional275

bias. The results appear in Figure 3. Figure 3 (a) shows that276

the prompt containing both same cluster samples and LLM277

inferred cluster summaries attains the highest win rate across278

all clusters, indicating that richer context yields more infor-279

mative and accurate reports. For comparison, Figure 3 (b)280

reports outcomes when only same cluster samples are sup-281

plied. We also directly contrast our two proposed prompt-282

ing variants in Figure 3 (c). Although the overall differences283

are modest, the variant that additionally provides LLM gen-284

erated cluster summaries consistently secures a slight edge,285

(a) Ours(+cluster sample & info)

(b) Ours (+cluster sample)

(c) Ours (+cluster sample) vs Ours(+cluster sam-
ple & info)

Figure 3: Win/Tie/Lose Outcomes by Prompt Variant with GPT-4o.

suggesting that including every available piece of contextual 286

information is beneficial for report quality. Full numerical re- 287

sults are listed in Table 6, and the exact evaluation prompts 288

appear in Table 5. We used gpt-4o and cluade-4 as judge llm. 289

Boldface numbers denote the best performance within each 290

comparison. 291

5 Conclusion 292

This paper proposes a novel framework that clusters high- 293

dimensional EV time-series data and generates diagnostic re- 294

ports using LLMs. The method introduces a MoA architec- 295

ture, where multiple agents perform clustering from diverse 296

perspectives based on LLM reasoning, and their outputs are 297

integrated into semantically coherent clusters. These clusters 298



are then used to construct prompts that gradually expand con-299

textual information during report generation.300

The effectiveness of the proposed method is empirically301

validated in two aspects. First, MoA based clustering out-302

performs the traditional K-means algorithm in terms of sil-303

houette score, demonstrating improved cohesion and separa-304

tion. Second, the MT-Bench evaluation based on the LLM-as-305

Judge protocol confirms that prompts containing both same306

cluster samples and LLM inferred cluster summaries result in307

the highest quality reports. These findings highlight that in-308

tegrating semantic-aware clustering with prompt engineering309

enhances the interpretability and practicality of LLM outputs310

in structured time-series domains.311

For future work, we plan to enhance the MoA framework312

by explicitly incorporating temporal dependencies, aiming to313

improve clustering performance on long or complex time-314

series data. We also intend to broaden comparative studies315

across various clustering algorithms and evaluation metrics316

to further verify the generalizability and robustness of the317

proposed approach. In addition, we aim to develop an in-318

teractive system that continuously refines clustering criteria319

and prompt design through feedback from domain experts,320

enabling ongoing performance improvements and deeper in-321

sight generation in real-world EV applications. Lastly, we322

plan to deploy this system as a practical EV battery diagnos-323

tic service and extend it into an integrated reporting solution324

suitable for industrial environments.325
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