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Abstract

This paper presents Decision Theory-guided Deep1

Reinforcement Learning, called DT-guided DRL, to2

address the cold start problem in DRL. By incorpo-3

rating decision theory, DT-guided DRL improves4

agents’ initial performance, robustness, learning ef-5

ficiency, and reliability in complex environments.6

We examine three problem contexts: cart pole,7

maze navigation, and inverted pendulum. Ex-8

perimental results show that DT-guided DRL en-9

hances initial guidance and exploration. During10

early training, it achieves at least 184% higher ac-11

cumulated reward in the cart pole problem and at12

least 279% higher accumulated reward in the maze13

problem. It also provides faster convergence in all14

problem contexts. This approach leverages human-15

informed knowledge, offering a foundation for fur-16

ther research.17

1 Introduction18

Decision theory, particularly utility theory [Fishburn et al.,19

1979], has long been a cornerstone in fields like economics,20

management science, and cybersecurity [Rădulescu and oth-21

ers, 2020], offering a structured framework for decision-22

making under uncertainty [North, 1968]. However, its lim-23

itations in handling complex environments, due to oversim-24

plified models and assumptions, restrict its broader appli-25

cability. In contrast, Deep Reinforcement Learning (DRL)26

has demonstrated remarkable success in learning intricate be-27

haviors through neural networks that model complex state-28

action dynamics, particularly in some foundational robot con-29

trol tasks such as balancing (Inverted Pendulum), navigation30

(Maze), and coordination (Cart Pole). Yet, the long train-31

ing times and initial random exploration of DRL pose signif-32

icant challenges for practical deployment, especially in criti-33

cal, real-world scenarios like robotics where early failures are34

unacceptable [Dulac-Arnold et al., 2019].35

For researchers and practitioners in robotics, integrating36

DRL offers transformative potential for enabling autonomous37

systems to learn complex tasks. However, poor early perfor- 38

mance and extensive training hinder its adoption in robotics, 39

where safety and efficiency are paramount. Addressing these 40

limitations is crucial for unlocking DRL’s full potential in 41

real-world applications. 42

To address these challenges, we propose Decision Theory- 43

guided Deep Reinforcement Learning, called DT-guided 44

DRL, which incorporates utility functions from decision the- 45

ory to guide early exploration. This approach mitigates the 46

cold start problem and ensures consistent performance during 47

training, particularly beneficial in robotics where trial-and- 48

error learning can be costly or dangerous. 49

Our proposed DT-guided DRL approach aims to facilitate 50

the transition from decision theory to DRL and mitigate the 51

cold start problem. By integrating utility functions into the 52

DRL framework, our method allows researchers and practi- 53

tioners to leverage existing decision theory knowledge while 54

benefiting from DRL’s advanced capabilities, easing adoption 55

through a more gradual transition. DT-guided DRL uses util- 56

ity functions to guide exploration and action selection in the 57

early learning stages, steering the agent toward promising re- 58

gions of the state space and avoiding poor initial performance. 59

We evaluate the effectiveness of our approach using three 60

benchmark environments: the classic cart pole, maze naviga- 61

tion tasks, and inverted pendulum. Those serve as proof-of- 62

concept domains to compare DT-guided DRL against stan- 63

dard DRL techniques and relevant baselines, including trans- 64

fer learning [Zhu and others, 2023], sample efficiency [Lin et 65

al., 2021], and imitation learning [Gros and others, 2020]. 66

This work presents the following key contributions: 67

1. We introduce a novel integration of utility theory, a fun- 68

damental component of decision theory, with the DRL 69

framework to enhance its applicability to robotics. This 70

is the first work to systematically merge these paradigms 71

in robotics, establishing a structured transition from 72

decision-theoretic models to DRL. This integration en- 73

ables informed early-stage exploration, reducing ineffi- 74

cient random search and accelerating learning in rein- 75

forcement learning environments. 76

2. We experimentally demonstrate that DT-guided DRL ef- 77



fectively mitigates the cold start problem, a major chal-78

lenge in reinforcement learning. Through extensive evalu-79

ations of cart poles, maze navigation, and inverted pendu-80

lum, representing robotic control, navigation, and balanc-81

ing, we show that our method achieves significantly higher82

initial performance, faster convergence, and greater sam-83

ple efficiency than standard DRL techniques and relevant84

baselines, including transfer learning, imitation learning,85

and sample-efficient RL.86

3. Our approach leverages human-informed knowledge to87

provide structured guidance during early exploration, im-88

proving learning stability and robustness in complex envi-89

ronments. This ensures that reinforcement learning can be90

more reliably applied to real-world robotics, where trial-91

and-error approaches are costly or unsafe.92

4. By bridging decision theory and DRL, our work lays93

the foundation for a new research direction at the in-94

tersection of both fields. The proposed framework not95

only enhances reinforcement learning efficiency but also96

opens new avenues for integrating expert knowledge and97

decision-theoretic principles into autonomous robotic sys-98

tems, making AI-driven decision-making more reliable,99

interpretable, and scalable.100

2 Related Work101

This section overviews existing approaches for enhancing102

DRL efficiency by reducing convergence time, focusing on103

prior-knowledge-enhanced initialization, transfer learning,104

imitation learning, and sample efficiency.105

Prior-knowledge enhanced initialization improves DRL106

efficiency by leveraging prior knowledge. Silva and Gom-107

bolay [2021] integrated domain-specific rules into RL, boost-108

ing performance without extensive data and highlighting its109

real-world potential. Wang et al. [2024] accelerated Hybrid110

Electric Vehicle (HEV) energy management by initializing111

neural networks with expert knowledge, improving learning112

speed and reducing energy consumption. Similarly, Xu and113

others [2020] applied warm-start Q-learning to HEVs, reduc-114

ing iterations and enhancing fuel efficiency. Wexler and oth-115

ers [2022] introduced confidence-constrained learning to mit-116

igate performance degradation in Warm-Start RL, balancing117

policy gradient and constrained learning. While warm starts118

in DRL and RL accelerate training, they may introduce biased119

exploration, limiting full-state-action space exploration.120

Transfer Learning (TL) has been applied to address the121

cold start problem in DRL. Approaches like the Hierar-122

chical Deep Reinforcement Learning Network (H-DRLN)123

for Minecraft have shown superior performance by reusing124

learned skills across tasks [Tessler and others, 2017]. Sim-125

ilarly, Reinforcement Learning Building Optimizer with126

Transfer Learning (ReLBOT) applied algorithms from data-127

rich buildings to new ones, mitigating cold start in smart128

buildings [Genkin and McArthur, 2022]. However, TL’s suc-129

cess depends on selecting a pre-training task closely aligned130

with the target task. Mismatched knowledge transfer can re-131

duce performance in the target domain.132

Imitation Learning (IL), such as Reduction-based Active133

Imitation Learning (RAIL) algorithm, reduces expert queries134

using active independently and identically distributed (i.i.d.) 135

learning, showing effectiveness in tasks like Cart-pole [Gros 136

and others, 2020]. Deep Deterministic Policy Gradient with 137

Imitation Learning (DDPG-IL) combines DDPG with imita- 138

tion learning for autonomous driving, improving convergence 139

and performance [Zou et al., 2020]. However, it relies heavily 140

on high-quality demonstrations and human expertise, strug- 141

gles with complex spaces, and faces ethical concerns and gen- 142

eralization challenges, adding complexity to its application. 143

Sample Efficiency (SE) in DRL has advanced signifi- 144

cantly. “JueWu-MC” used a hierarchical approach with hu- 145

man demonstrations to address partial observability in open- 146

world games, outperforming baselines in NeurIPS MineRL 147

competitions [Lin et al., 2021]. Option Machines (OMs) 148

leveraged high-level instructions for action selection, ex- 149

celling in single-task, multi-task, and zero-shot learning [den 150

Hengst and others, 2022]. A DRL method for cloud-native 151

Service Function Chains (SFC) caching tackled cold-start 152

problems using Graph Neural Networks (GNNs), optimiz- 153

ing latency and request acceptance under high-load condi- 154

tions [Zhang and others, 2022]. Ma and others [2022] in- 155

troduced a freshness discounted factor in prioritized experi- 156

ence replay (PER), improving learning efficiency. Random- 157

ized Ensemble Double Q-learning (REDQ) [Chen and oth- 158

ers, 2021] achieved state-of-the-art sample efficiency on Mu- 159

JoCo [Todorov et al., 2012] using a high update-to-data ra- 160

tio and an ensemble of Q-functions. Dropout Q-learning 161

(DroQ) [Hiraoka and others, 2022], a variant of REDQ, im- 162

proved computational and memory efficiency while main- 163

taining similar sample efficiency. Reinforcement Learning 164

with Policy-Driven Regularization (RLPD) [Ball and others, 165

2023] used symmetric sampling and Layer Normalization to 166

efficiently leverage offline data in online RL, outperforming 167

prior methods without pre-training. Lastly, DRL trained a 168

quadruped robot to walk on varied terrains in 20 minutes by 169

optimizing actor-critic algorithms, achieving real-world sam- 170

ple efficiency without simulation [Smith et al., 2023]. 171

Despite advancements, sample efficiency in RL remains 172

a challenge. Methods like REDQ [Chen and others, 2021], 173

DroQ [Hiraoka and others, 2022], and RLPD [Ball and oth- 174

ers, 2023] rely on random exploration, leading to poor early 175

performance, especially in real-world applications. They 176

struggle with sparse rewards, complex dynamics, generaliza- 177

tion issues, and balancing exploration with exploitation. 178

Our DT-guided DRL technique addresses these issues by 179

leveraging decision theory, using utility functions to guide 180

learning and ensure acceptable early performance. This struc- 181

tured exploration mitigates random exploration and sparse re- 182

ward challenges, offering a promising direction for improving 183

RL efficiency in data-limited real-world scenarios. 184

3 Decision Theory-Guided DRL 185

In DRL, balancing exploration and exploitation is crucial for 186

finding optimal solutions. Traditional methods like dynamic 187

ϵ-greedy exploration, which start with random exploration, 188

often delay convergence. Our DT-guided DRL approach in- 189

tegrates decision theory to provide informed action distribu- 190



tions from the start, address the cold start problem1, and re-191

duce the risk of local optima.192

Unlike existing works [Chen and others, 2021; Hiraoka and193

others, 2022; Ball and others, 2023], DT-guided DRL pro-194

vides effective initial guidance, avoiding poor performance195

from random exploration. It operates efficiently on small196

datasets, enhancing generalizability across diverse RL sce-197

narios.198

3.1 Problem Formulation Using DRL199

We demonstrate our technique using the Cart Pole envi-200

ronment from Gymnasium [Hsiao and others, 2022; Man-201

rique Escobar and others, 2020] and maze problems com-202

mon in decision theory [Dayan and Daw, 2008], employing203

the Proximal Policy Optimization (PPO) algorithm [Schul-204

man and others, 2017] for its superior performance in our ex-205

periments.206

A DRL agent operates within a Markov Decision Pro-207

cess (MDP) as follows:208

• State (S): In a cart pole, the state includes cart position,209

velocity, pole angle, and angular velocity. For maze prob-210

lems, it represents the agent’s x and y coordinates.211

• Action (A): In a cart pole, actions involve pushing the cart212

left or right; in maze problems, actions include moving up,213

down, left, or right.214

• Transition Probabilities (T (s′|s, a)): The probability of215

transitioning from state s to s′ given action a.216

• Reward (R(s)): In the cart pole, +1 is given for each step217

the pole remains balanced; in maze problems, small penal-218

ties apply for non-exit steps, and +1 is awarded for reaching219

the exit.220

• Policy (π): A mapping from states to actions.221

3.2 Problem Formulation Using Decision Theory222

To guide the DRL agent effectively, the utility function must223

be tailored to the specific problem or environment.224

Cart Pole Environment. In the cart pole problem, the util-225

ity function focuses on the pole’s angle. Positive utility is226

assigned for pushing left when the angle is negative and push-227

ing right when positive, aiming to keep the pole upright. For-228

mally, a utility is defined as:229

U(spole angle, a) =

{
− spole angle

0.209 , if a is push left
spole angle

0.209 , otherwise.
(1)

Here, spole angle represents the pole angle, ranging between230

(-0.418, 0.418) radians. Since the game ends if the angle ex-231

ceeds ±12◦ (or ±0.209 radians), the utility is normalized by232

dividing by 0.209.233

Maze Environment. In the maze, the agent can move234

up, down, left, or right, with its position represented as235

(Ps,x, Ps,y). The utility function incorporates the distance236

1The cold start problem arises from limited initial data, leav-
ing the learning agent with insufficient knowledge to make in-
formed decisions and resulting in poor early performance.

from the agent’s current position to the exit: 237

U(s, a) =

{
1

dis(Ps′ ,Pexit)
, if no obstacles in a’s direction

0, otherwise,
(2)

where s′ is the anticipated new state after action a, and 238

dis(Ps′ , Pexit) is the distance to the exit, given by: 239

dis(Ps′ , Pexit) =
√

(Ps′,x − Pexit,x)2 + (Ps′,y − Pexit,y)2.

(3)

3.3 Integrating DT with DRL for Discrete Actions 240

The effectiveness of DT-guided DRL lies in combining the 241

DT agent’s action probabilities with the neural network (NN) 242

output. Then fine-tunes that network via PPO updates; this 243

two-stage loop repeats until convergence. As shown in Fig- 244

ure 1, the process is as follows: 245

1. Utility Function: Create a DT agent with a problem- 246

specific utility function (e.g., Eq. (1) for cart pole or 247

Eq. (2) for the maze). Convert these utility values into 248

probabilities using a softmax layer, adjusting the tempera- 249

ture for determinism. 250

2. Deep Neural Network (DNN): Build a DNN that inputs 251

the environment’s current state and outputs action proba- 252

bilities. 253

3. Integration: Combine the NN’s outputs with the DT 254

agent’s probabilities (reverse softmax), summing them and 255

adjusting a dynamic weight w, starting at w = 1 and grad- 256

ually reducing to w = 0 with a linear decay schedule dur- 257

ing training. 258

4. Final Softmax: Apply a softmax layer (temperature 1) to 259

the combined outputs for a valid action probability distri- 260

bution. 261

5. Training: Train the DNN using RL algorithms like PPO 262

or DQN, updating weights based on rewards from interac- 263

tions with the environment. 264

Utility vs. Reward Function. Unlike reward shaping, 265

which modifies the environment’s primary reward structure, 266

our utility functions act as an auxiliary heuristic to guide early 267

exploration. Rather than altering the original reward sig- 268

nals that define task objectives, the utility biases the agent’s 269

action selection during initial training, accelerating learning 270

while preserving the problem’s fundamental nature. This 271

distinction ensures the canonical MDP formulation remains 272

intact while effectively mitigating the cold start challenge. 273

Although reward shaping can guide exploration by modi- 274

fying reward signals, it alters the original MDP objectives, 275

whereas our approach provides early decision-theoretic guid- 276

ance without changing the inherent reward structure. 277

3.4 Integrating DT with DRL for Continuous 278

Actions 279

Integrating decision theory (DT) with DRL in continuous ac- 280

tion spaces poses challenges due to the infinite action set. 281

To address this, we adapt DT-guided DRL by incorporating 282

decision-theoretic guidance and experience replay. 283

Integrating DT with DRL follows this process: 284



Input 
DT Agent

Softmax (Temp. = 1)

Softmax (temp. = 0.5)

Reverse Softmax

Figure 1: Procedures for generating solutions by a DT-guided DRL agent: St is the state at round t, and ProbDT (a) or ProbDT PPO(a)
are the action probability.

1. Utility Function: Develop a DT agent with a problem-285

specific utility function mapping continuous observations286

to actions. For example, in the inverted pendulum, the util-287

ity function computes optimal torque from state variables288

(e.g., pole angle, cart position) to balance.289

2. Initial Interaction: The DT agent interacts with the envi-290

ronment for multiple episodes, selecting actions to achieve291

task objectives (e.g., balancing the pendulum).292

3. Experience Collection: Record state transitions, actions,293

rewards, and next states from the DT agent’s interactions294

to capture decision-making patterns informed by the util-295

ity function.296

4. Replay Buffer Integration: Insert the collected experi-297

ences into the DRL agent’s replay buffer, enriching the298

initial training data with informed decisions and improv-299

ing sample efficiency.300

5. DRL Model: Build a DRL model that inputs continuous301

states and outputs continuous actions or action distribution302

parameters (e.g., mean and variance for Gaussian policies303

in Soft Actor-Critic or SAC).304

6. Neural Network Training: Train DRL by sampling mini-305

batches from the replay buffer (with DT and DRL experi-306

ences) and updating policy and value networks.307

7. Policy Improvement: The DRL agent refines its policy308

by learning from DT-guided experiences and interactions,309

allowing for better generalization and exploring more rel-310

evant actions.311

By initializing the replay buffer with decision-theory-312

driven experiences, the DRL agent benefits from an informed 313

warm start, reducing random exploration and accelerating 314

convergence in continuous action environments. 315

4 Experimental Setup 316

4.1 Environment & Parameterization 317

Our study evaluates DT-guided DRL in both discrete and con- 318

tinuous action environments. 319

Discrete Action Environments 320

We consider two scenarios as follows. 321

• Cart Pole: The agent balances a pole on a cart by pushing it 322

left or right. The state space includes cart position, velocity, 323

pole angle, and angular velocity. The agent earns +1 per 324

timestep, and the pole stays upright, with episodes ending 325

if the pole tilts beyond ±12◦, the cart moves out of bounds 326

or after 100 timesteps. 327

• Maze: The agent navigates from the top-left to the bottom- 328

right of the maze. The state space represents the agent’s 329

x/y position, and the action space includes moving up, 330

down, left, or right. Reaching the exit rewards +1, while 331

each step incurs a small penalty. Episodes end upon reach- 332

ing the exit or exceeding the step limit. 333

Continuous Action Environment 334

The Inverted Pendulum problem involves balancing a pole 335

on a cart by applying continuous forces [Tarkhov and oth- 336

ers, 2023]. The state space includes cart position, velocity, 337



Table 1: NEURAL NETWORK CONFIGURATION PARAMETERS

Parameter Value
(PPO)

Value
(SAC)

Discount Factor (γ) 0.99 0.99
Learning Rate 0.0003 0.0003
Replay Buffer Size 2048 20000
Batch Size 64 256
PPO’s Clipping Parameter 0.2 NA
SAC’s Target Smoothing Coeffi-
cient (τ )

NA 0.005

SAC’s Temperature Parameter (α) NA 0.036
Network Architecture 64 x 64 256 x 256
Activation Function Tanh ReLU

pole angle, and angular velocity. The action space is the con-338

tinuous force applied to the cart. Table 1 summarizes key339

configurations, including discount factor, learning rate, re-340

play buffer size, batch size, and network architecture. These341

settings are based on Stable-Baselines3 defaults [Raffin and342

others, 2021], ensuring rigorous and reproducible results.343

4.2 Comparing Schemes344

Discrete Action Environments345

Under this environment, an agent takes an action as follows:346

• Decision Theory (DT) Agent [Fishburn et al., 1979]: Uses347

DT-based utility functions for action selection.348

• Standard Proximal Policy Optimization (PPO) [Schul-349

man and others, 2017]: Uses the PPO algorithm without350

decision-theoretic guidance.351

• Transfer Learning (TL) PPO [Genkin and McArthur,352

2022]: Starts training on a 3x3 maze and transfers learn-353

ing to larger mazes to evaluate TL effectiveness.354

• Sample Efficiency (SE) PPO [Ball and others, 2023]: En-355

hances sample efficiency through techniques like an in-356

creased replay buffer and freshness-prioritized experience357

replay.358

• Imitation Learning (IL) PPO [Gros and others, 2020]: An359

agent is pre-trained with expert demonstrations before con-360

tinuing standard PPO training.361

• DT-guided PPO (Ours): Integrates DT into the action se-362

lection process during training. As outlined in Section 3,363

the method integrates the neural network’s action probabil-364

ities with those from the utility function, employing a dy-365

namic weight that gradually shifts from DT guidance to an366

adaptive policy.367

Continuous Action Environment368

Under this environment, an agent behaves as follows:369

• Standard Soft Actor-Critic (SAC) Haarnoja and others370

[2018]: Uses the SAC algorithm without decision-theoretic371

guidance.372

• DT-guided SAC (Ours): Initializes the replay buffer with373

experiences collected from the DT agent.374

The source code is accessible at https://github.com/375

Wan-ZL/DT-DRL.376

Figure 2: Accumulated rewards under DT, PPO, SE PPO, IL PPO,
and DT-guided PPO over 500 training episodes in the Cart Pole
problem.

Figure 3: Accumulated rewards under DT, PPO, TL PPO, SE PPO,
and DT-guided PPO over 500 training episodes in the Maze problem.

5 Simulation Results & Analysis 377

5.1 Cart Pole Problem 378

Comparative Performance Analysis 379

Figure 2 presents the accumulated rewards for five agents: 380

DT, PPO, SE PPO, IL PPO, and DT-guided PPO in the Cart 381

Pole simulation. 382

Our key observations and findings are as follows. First, the 383

DT-guided PPO (red curve) outperforms other PPO agents 384

early in training, starting with a higher reward. This advan- 385

tage comes from integrating DT utility values with the neu- 386

ral network’s output. Since the neural network begins with 387

zero-initialized outputs and uses Tanh as the activation func- 388

tion, the DT utility dominates the initial decisions, making 389

the early behavior of the DT-guided PPO similar to the DT 390

agent (blue curve). Second, the DT agent’s reward remains 391

static, showing its limitation in adapting beyond its prede- 392

fined utility function. In contrast, the DT-guided PPO steadily 393

improves, reflecting the neural network’s increasing ability 394

to learn from the environment and refine its actions, result- 395

ing in progressively higher rewards. Finally, while all PPO 396

agents converge to similar reward levels, the DT-guided PPO 397

converges faster, demonstrating accelerated learning. This is 398

due to the DT-guided PPO’s informed starting point, which 399

reduces the need for exploration and speeds up the learning 400

https://github.com/Wan-ZL/DT-DRL
https://github.com/Wan-ZL/DT-DRL
https://github.com/Wan-ZL/DT-DRL


process. This early performance boost is crucial in real-world401

applications where each failed attempt may be costly or dan-402

gerous. In particular, our data shows that DT-guided DRL403

reaches near-optimal behavior significantly faster, demon-404

strating improved sample efficiency in the most critical initial405

phase of training.406

Overall, Figure 2 confirms that integrating decision the-407

ory into the PPO framework mitigates random exploration408

early in training and accelerates convergence to optimal per-409

formance in the cart pole task.410

5.2 Maze Problem411

Comparative Performance Analysis412

Figure 3 shows the accumulated rewards for five agents, in-413

cluding DT, PPO, TL PPO, SE PPO, and DT-guided PPO, in414

the Maze simulation.415

The results reveal several key insights: (1) DT-guided416

PPO consistently outperforms all other agents, demonstrating417

the effectiveness of combining decision theory’s structured,418

utility-based guidance with PPO’s flexible neural learning.419

This integration enables more informed decision-making, es-420

pecially in large mazes. (2) The maze environment poses421

a sparse reward challenge, where rewards are only received422

upon exit. DT-guided PPO mitigates this by using decision-423

theoretic guidance for early exploration, reducing inefficient424

random search, and enabling more focused navigation. (3)425

DT-guided PPO converges faster than other agents. Its initial426

utility-driven exploration accelerates learning by reducing the427

time to discover optimal strategies, allowing it to reach near-428

optimal performance in fewer episodes.429

Sensitivity Analysis – Effect of Maze Size (m)430

Figure 4 illustrates the dynamics of accumulated rewards as a431

function of maze size (m), ranging from 3 to 8. Each subplot432

delineates the trajectory of accumulated reward over training433

episodes, with the x-axis representing the episode count and434

the y-axis quantifying the reward.435

Upon examination, we discern several patterns as follows.436

(1) The DT-guided PPO agent consistently surpasses all other437

agents (DT, PPO, TL PPO, and SE PPO) regarding accumu-438

lated rewards across all maze sizes. This superior perfor-439

mance suggests that DT-guided PPO leverages the systematic440

approach of decision theory and the flexible learning capabil-441

ities inherent in the PPO’s neural network structure. Such an442

integration gives the agent a robust navigational strategy in443

the maze, which becomes increasingly advantageous as the444

maze’s complexity escalates. This is crucial in larger mazes445

where the agent must contend with more intricate challenges.446

(2) As the maze size escalates, the differential in performance447

between the DT-guided PPO and other PPO agents becomes448

more pronounced, especially in later episodes. This trend449

could be attributed to the DT component providing a more ef-450

fective heuristic in the early stages of exploration, guiding the451

agent through larger state spaces more efficiently. The DT’s452

structured approach potentially reduces the agent’s search453

space by giving zero utility to actions toward obstacles. Thus,454

it mitigates the challenges posed by a larger maze’s complex-455

ity and helps to maintain higher performance levels than the456

pure PPO agent. (3) A general trend observed is the decline457

in the accumulated reward for all agents with increasing maze 458

size, with the DT agent demonstrating considerable fluctua- 459

tion when m ≥ 7. This fluctuation could stem from the am- 460

plified complexity and inherent difficulties of larger mazes, 461

where a sole reliance on decision theory might not yield effi- 462

cient pathfinding consistently. Without the capacity to learn 463

and adapt from interactions with the environment, a purely 464

decision-theoretic model may fail. Conversely, a pure PPO 465

approach may struggle with sparse rewards, as exits become 466

harder to reach and positive rewards become less frequent as 467

the maze expands. 468

Despite these challenges, DT-guided PPO resists the sparse 469

reward problem, likely due to initial guidance from the de- 470

cision theory component directing the agent toward more re- 471

warding trajectories in larger mazes. The hybrid model’s inte- 472

gration of structured decision-making with adaptive learning 473

effectively manages maze complexities across scales. 474

The DT-guided PPO’s consistent outperformance across 475

maze sizes illustrates the value of combining structured 476

decision-making with empirical adaptive neural networks, es- 477

pecially when dealing with problems of increasing size and 478

complexity. The data suggests this hybrid approach could be 479

a promising direction for developing robust solutions in com- 480

plex, dynamic environments. 481

5.3 Inverted Pendulum Problem 482

Comparative Performance Analysis 483

Figure 5 shows the accumulated rewards for the SAC and DT- 484

guided SAC agents in the Inverted Pendulum simulation. 485

The key observations are: (1) Both agents display low re- 486

wards (around 4 to 6) during the initial 150 episodes, re- 487

flecting the random exploration phase. (2) The DT-guided 488

SAC (red curve) demonstrates an early advantage over the 489

SAC agent (blue curve), as the decision-theoretic function 490

provides informed action guidance, enabling more effective 491

exploration compared to SAC’s purely random approach. 492

Sensitivity Analysis – Impact of Decision-Theoretic 493

Initialization on SAC Performance 494

Figure 6 compares the performance of SAC* and DT-guided 495

SAC* variants under different initialization strategies. In 496

standard SAC, a fixed number of random steps is used ini- 497

tially to promote exploration. SAC* removes this random 498

initialization, while DT-guided SAC* replaces it with 1 or 2 499

episodes of interactions from a decision-theoretic (DT) agent, 500

providing structured guidance early in training. 501

Key observations are: (1) DT-guided SAC* consistently 502

outperforms SAC*, achieving higher accumulated rewards. 503

The initial DT-driven interactions guide the agent away from 504

inefficient exploration and toward promising actions. (2) 505

Both the 1-episode and 2-episode variants perform similarly, 506

suggesting that the DT agent provides consistent guidance 507

and that additional episodes yield diminishing returns. 508

6 Conclusion & Future Work 509

We proposed Decision Theory-guided Deep Reinforcement 510

Learning (DT-guided DRL) to address the cold start problem 511

by integrating decision-theoretic principles to improve ini- 512

tial performance and accelerate convergence. Experiments on 513
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(b) m = 4
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(c) m = 5
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(d) m = 6
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(e) m = 7
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(f) m = 8

Figure 4: Effect of maze size (m): Accumulated rewards under DT, PPO, TL PPO, SE PPO, and DT-guided PPO over 500 training episodes.

Figure 5: Accumulated reward of SAC and DT-guided SAC over
500 training episodes in the Inverted Pendulum problem.

cart pole, maze, and inverted pendulum tasks show that DT-514

guided DRL consistently outperforms conventional agents,515

achieving higher early-stage rewards and faster learning.516

In the cart pole and maze tasks, DT-guided DRL demon-517

strated strong initial performance and robustness, particu-518

larly under sparse rewards and large-scale navigation. In the519

continuous-action inverted pendulum task, it enhanced early520

learning by leveraging decision-theoretic interactions.521

While effective in providing structured exploration and im-522

proved early learning, the approach depends on problem-523

specific utility functions, which may not generalize easily.524

Although tested on simplified benchmarks, the results clearly525

demonstrate DT-guided DRL’s value in mitigating the cold526

start problem. Future work will explore scaling to complex527

domains, such as multi-joint robots, legged locomotion, and528

Figure 6: Accumulated reward of SAC* and DT-guided SAC* with
one or two episodes of decision theory agent interactions during the
training in the Inverted Pendulum problem.

vision-based tasks. 529

We also plan to investigate automated ways of deriving 530

utility functions through inverse RL or meta-learning, reduc- 531

ing the reliance on manual heuristics. Combining DT-guided 532

exploration with intrinsic-motivation approaches [Aubret et 533

al., 2023] may further enhance sample efficiency. Evaluating 534

DT-guided DRL in large-scale, high-dimensional tasks and 535

in safety-critical real-world robotics platforms forms the next 536

crucial step in validating its broader efficacy. 537

In conclusion, DT-guided DRL represents a significant step 538

towards more efficient and reliable reinforcement learning. 539

We hope this work inspires further research at the intersection 540

of decision theory and deep reinforcement learning. 541
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