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Abstract
This paper presents a novel hierarchical framework1

for portfolio optimization, integrating lightweight2

Large Language Models (LLMs) with Deep Rein-3

forcement Learning (DRL) to combine sentiment4

signals from financial news with traditional mar-5

ket indicators. Our three-tier architecture employs6

base RL agents to process hybrid data, meta-agents7

to aggregate their decisions, and a super-agent to8

merge decisions based on market data and senti-9

ment analysis. Evaluated on data from 2018 to10

2024, after training on 2000–2017, the framework11

achieves a 26% annualized return and a Sharpe ra-12

tio of 1.2, outperforming equal-weighted and S&P13

500 benchmarks. Key contributions include scal-14

able cross-modal integration, a hierarchical RL15

structure for enhanced stability, and open-source16

reproducibility thanks to Google Collab notebooks.17

1 Introduction18

The integration of Large Language Models (LLMs) and Re-19

inforcement Learning (RL) offers a powerful approach to20

financial portfolio optimization, leveraging LLMs’ ability21

to process unstructured data and RL’s strength in sequen-22

tial decision-making. Domain-specific LLMs like FinBERT23

[Araci, 2019] extract nuanced sentiment signals from finan-24

cial news, capturing market sentiment and investor behav-25

ior critical for anticipating price movements [Tetlock, 2007].26

Meanwhile, RL enables adaptive strategies in dynamic mar-27

kets characterized by feedback loops and regime shifts [Jiang28

et al., 2017].29

Recent studies highlight the efficacy of LLM-RL hybrids,30

with sentiment-enhanced RL models outperforming tradi-31

tional RL in single-stock trading and portfolio management.32

These models integrate qualitative signals from news with33

quantitative metrics, improving risk-adjusted returns [Un-34

nikrishnan and others, 2024]. For instance, news-driven35

RL frameworks leverage textual cues to enhance decision-36

making, demonstrating the value of cross-modal integration37

[Xu and Zhou, 2018].38

Despite these advances, many LLM-RL approaches rely on39

single-modal or flat architectures, which limit their ability40

to fully exploit textual and numerical data. Single-modal41

systems, using only price data or sentiment scores, struggle 42

to capture the multidimensional nature of financial markets, 43

leading to suboptimal decisions in volatile conditions [Li et 44

al., 2021]. Flat architectures, as seen in early RL trading sys- 45

tems [Deng et al., 2016], lack scalability and interpretability 46

for complex portfolios, often resulting in unstable policies or 47

overfitting. 48

To overcome these limitations, we propose a hierarchical 49

portfolio management framework combining Deep Rein- 50

forcement Learning (DRL) with lightweight, domain-specific 51

LLMs like FinBERT [Araci, 2019]. The framework creates 52

a hybrid observation space by integrating sentiment scores 53

with traditional financial indicators. It employs a three-layer 54

hierarchy: base RL agents process raw data, meta-agents ag- 55

gregate base-level decisions, and a super-agent synthesizes 56

cross-modal signals to optimize portfolio allocations across 57

diverse market regimes. 58

The key contributions of this work are : 59

• Cross-modal integration: We seamlessly combine 60

LLM-derived sentiment scores with structured financial 61

data within a unified RL-driven portfolio optimization 62

framework. 63

• Hierarchical aggregation: We introduce a novel three- 64

layer architecture that hierarchically combines base 65

agent decisions through meta-agents and a final super- 66

agent, enabling adaptive decision-making across diverse 67

market conditions. 68

• Practical applicability: Our approach showcases the 69

effective deployment of lightweight LLMs in finance, 70

offering a scalable and interpretable solution for latency- 71

sensitive and transparency-critical applications. 72

The remainder of this paper is organized as follows. In Sec- 73

tion 2, we establish the foundations of our work by review- 74

ing the state of the art in Portfolio Optimization (PO), Re- 75

inforcement Learning (RL), and Natural Language Process- 76

ing (NLP) within financial applications. Section 3 presents 77

our overall framework architecture, detailing the NLP-driven 78

and data-driven pipelines used to extract features and con- 79

struct monthly observation vectors for RL agents. In Sec- 80

tion 4, we describe the selected portfolio assets and outline 81

the constraints imposed to reflect realistic investment scenar- 82

ios. Section 5 introduces the individual RL agents and ex- 83

plains how actions, rewards, and training were implemented 84



in our portfolio management environment. We then detail the85

hierarchical structure of our RL pipeline in Section 6, where86

base agents are aggregated via meta-agents trained to special-87

ize on different data modalities. Building on this, Section 788

introduces the super-agent that synthesizes meta-agent out-89

puts to produce final portfolio allocations. Section 8 gives90

key results. Finally, Section 9 concludes and gives hints for91

future research and enhancement.92

2 Literature Review93

2.1 Portfolio Optimization94

Portfolio optimization has long been a cornerstone of finan-95

cial management, with Harry Markowitz’s Mean-Variance96

Optimization (MVO) framework serving as its foundation97

[Markowitz, 1952]. MVO revolutionized investment strategy98

by quantifying the trade-off between risk and return, propos-99

ing that investors should select portfolios that maximize ex-100

pected return for a given level of risk, or minimize risk for a101

desired return.102

This led to the concept of the efficient frontier, where optimal103

portfolios reside. However, MVO rests on assumptions such104

as Gaussian returns and static correlations, which rarely hold105

in real-world markets. Financial crises, notably Black Mon-106

day in 1987 and the 2008 global financial meltdown, exposed107

these limitations, as markets exhibited extreme volatility and108

non-linear behaviors that MVO failed to anticipate. These109

events underscored the need for more adaptive and dynamic110

approaches to portfolio management.111

2.2 Reinforcement Learning in Finance112

Reinforcement Learning (RL) has emerged as a powerful al-113

ternative for financial decision-making, particularly in dy-114

namic and uncertain environments. Early pioneers like115

Moody and Saffell [Deng et al., 2016] applied RL to trading,116

demonstrating its potential for sequential decision-making.117

More recently, [Jiang et al., 2017] and [Liang et al., 2018]118

introduced a deep RL framework tailored for portfolio man-119

agement, leveraging the ability of RL agents to learn optimal120

policies through interaction with market environments. These121

algorithms enable RL agents to adapt dynamically to market122

conditions, learning from experience rather than relying on123

static assumptions, making them well-suited for portfolio op-124

timization in very fast-evolving markets.125

2.3 NLP in Financial Applications126

Natural Language Processing (NLP) has revolutionized ex-127

tracting insights from unstructured financial data. FinBERT, a128

BERT variant fine-tuned on financial texts, excels at classify-129

ing sentiment in news and social media into positive, neutral,130

or negative categories [Araci, 2019]. This sentiment analysis131

captures market trends and investor behavior beyond histor-132

ical price data [Tetlock, 2007], enhancing predictive models133

for market movements.134

Recent studies support compact domain-specific models135

like FinBERT in financial applications. [Lefort et al., 2024]136

show that fine-tuned lightweight models, such as FinBERT137

and FinDRoBERTa, outperform large-scale models like GPT-138

3.5 and GPT-4 in financial sentiment classification, especially139

in zero-shot settings, making FinBERT a reliable, efficient 140

choice for sentiment signal generation in RL frameworks. 141

A survey by [Li et al., 2024] categorizes large language 142

model applications in finance, including sentiment analysis 143

and risk forecasting, highlighting trade-offs between domain- 144

specific fine-tuning and general-purpose models. 145

Recent FinLLM challenge submissions demonstrate inno- 146

vative LLM applications. Finance Wizard [Lee and Lay-Ki, 147

2024] fine-tuned a LLaMA3-based model for financial news 148

summarization. L3iTC [Pontes et al., 2024] used quantiza- 149

tion and LoRA for efficient financial text classification. The 150

CatMemo team [Cao et al., 2024] improved cross-task gen- 151

eralization by integrating diverse financial datasets for LLM 152

fine-tuning. 153

2.4 CompAI 154

Composite AI represents a paradigm shift, blending multi- 155

ple AI techniques to create robust, context-aware systems. 156

In the context of portfolio management, Composite AI in- 157

tegrates RL’s decision-making capabilities with NLP’s senti- 158

ment insights, forming a holistic approach that addresses both 159

quantitative and qualitative market factors. The hierarchical 160

structure proposed in this paper exemplifies Composite AI, 161

leveraging specialized agents to process distinct data types 162

and synthesizing their outputs for optimized portfolio alloca- 163

tions. 164

3 Methods 165

3.1 Architecture 166

Our portfolio optimization framework integrates reinforce- 167

ment learning (RL) and natural language processing (NLP) 168

with a three-tier hierarchical structure as described in Fig- 169

ure 1. Base agents, using Stable Baselines 3 algorithms, pro- 170

cess monthly financial metrics from YahooFinance or sen- 171

timent scores from financial news via FinBERT, proposing 172

portfolio weights in custom RL environments with a reward 173

function balancing ROI, volatility, and drawdown. Meta- 174

agents, built in PyTorch, refine outputs from data-driven and 175

NLP-based base agents, while a super-agent combines these 176

to produce final allocations. Trained on 2003–2017 data and 177

backtested on 2018–2024, the system outperforms bench- 178

marks, effectively blending quantitative and qualitative in- 179

sights for modern investment strategies. 180

Figure 1: Summarized Architecture



3.2 Data-Driven Pipeline181

Collecting Closing Prices182

We gather daily adjusted closing prices for 14 financial asset183

from January 1, 2003, to December 31, 2024. This data is184

fetched using the yfinance Python library, which connects185

to Yahoo Finance. Adjusted closing prices are used because186

they adjust for events like stock splits and dividends, mak-187

ing them suitable for accurate financial analysis. The process188

involves specifying asset tickers (e.g., GSPC for S&P 500),189

setting the date range, and downloading the data into a struc-190

tured format like a CSV file.191

Creating Monthly Observation Vectors192

Using the daily closing prices, we create monthly observation193

vectors for the reinforcement learning (RL) agent. For each194

month, we compute195

• Sharpe Ratio: Measures risk-adjusted return based on196

daily returns.197

Sharpe Ratio =
E[Rp −Rf ]

σp
(1)

where Rp is the mean daily return of the portfolio, Rf is the198

risk-free rate, and σp is the standard deviation of daily returns199

(volatility).200

• Sortino Ratio: Focuses on downside risk, using the standard201

deviation of negative returns.202

Sortino Ratio =
E[Rp −Rf ]

σd
(2)

where σd is the downside deviation:203

σd =

√
1

T

∑
t:Rt<0

(Rt − 0)2 (3)

with T as the number of days with negative returns Rt.204

• Maximum Drawdown (MDD): Largest peak-to-trough de-205

cline in portfolio value within the month.206

MDD = max
t∈[1,T ]

(
Peakt − Trought

Peakt

)
(4)

where Peakt is the highest portfolio value up to time t, and207

Trought is the lowest value after the peak.208

• Calmar Ratio: Measures return relative to maximum loss.209

Calmar Ratio =
E[Rp]

MDD
(5)

where MDD is the maximum drawdown.210

• Volatility: Standard deviation of daily returns.211

σp =

√√√√ 1

T − 1

T∑
t=1

(Rt − R̄)2 (6)

where Rt is the daily return at time t, and R̄ is the mean daily212

return over T days.213

• Correlation Matrix214

The correlation matrix is computed from daily returns across215

N assets. The Pearson correlation coefficient between assets i216

and j is:217

ρi,j =
Cov(Ri, Rj)

σiσj
(7)

where the covariance is: 218

Cov(Ri, Rj) =
1

T − 1

T∑
t=1

(Ri,t − R̄i)(Rj,t − R̄j) (8)

with Ri,t, Rj,t as daily returns of assets i and j, and R̄i, R̄j as 219

their mean returns. 220

The correlation matrix C is an N ×N symmetric matrix with 221

Ci,j = ρi,j , Ci,i = 1, and Ci,j = Cj,i. It is flattened into a 222

vector by taking the upper triangular elements (excluding the 223

diagonal), yielding N(N−1)
2

unique correlations. 224

3.3 NLP-Driven Pipeline 225

How to Aboard the Time Specific Data Collection Issue? 226

To collect news articles matching each month from 2003 to 227

2024, we use Google News with date filters. For each of the 228

14 assets, we define search terms (e.g., ”S&P 500”, ”SPX”) 229

and scrape articles published within each month. These ar- 230

ticles are processed with FinBERT, a model that analyzes fi- 231

nancial sentiment, to produce monthly sentiment scores. The 232

pseudo code given in Algorithm 1 outlines this process: 233

Algorithm 1 News Scraping and Sentiment Analysis

1: Input: Assets and keywords
2: Output: Monthly sentiment scores
3: for each asset do
4: Define terms (e.g., ”S&P 500” = {”SP 500”, ”SPX”})
5: end for
6: for each term do
7: for each month in 2003–2024 do
8: Generate Google News URL with date filter
9: Scrape the 10 first article for each links

10: end for
11: end for
12: for each article do
13: Extract text
14: Compute sentiment with FinBERT
15: Compute asset sentiment score St =∑

(Ppositive−Pnegative)
N

16: end for
17: Store scores by month and asset

NLP Driven Observation Vectors 234

The NLP-driven observation vector for each month com- 235

bines: 236

• Volatility Vector: Standard deviation of daily returns. 237

• Sentiment Score Vector: Derived from that month’s 238

news. 239

We chose to stress the importance of volatility as it gives 240

the agent an extra leg to stand on. The volatility of the market 241

is a strong indicator and it often indicates the precision of 242

trends (trends will be simpler to identify in a low volatility 243

market). 244

Data handling 245

Data quality is paramount in financial modeling, and rig- 246

orous preprocessing ensures that Reinforcement Learning 247



(RL) agents receive clean, standardized inputs. For price248

data, missing values—often due to non-trading days—are ad-249

dressed using forward-filling, backward filling, or linear in-250

terpolations, as financial prices typically change gradually.251

This method preserves the continuity of market trends by252

minimizing disruptions in the time series. Prices are then nor-253

malized to all be 1 at first open, which is essential for com-254

paring assets with vastly different price magnitudes. With-255

out normalization, RL agents might inadvertently overweight256

higher-priced assets, skewing portfolio allocations.257

For sentiment data, monthly aggregation of sentiment scores258

normalizes volume disparities across assets, as some indices259

receive far more media coverage than others. This ensures260

that sentiment inputs are consistent and comparable, prevent-261

ing bias toward heavily covered assets.262

3.4 Reproducibility with Google Collab263

To ensure full transparency and enable further research, all264

experiments presented in this paper are reproducible via three265

Google Colab notebooks, each addressing a different part of266

the pipeline:267

• Data Pipeline and Sentiment Extraction: The first268

notebook1 provides a detailed, end-to-end pipeline for269

financial data collection and sentiment score generation.270

It scrapes financial news, applies FinBERT to extract271

sentiment at the asset level, and exports formatted senti-272

ment scores for downstream use.273

• Fast Simulated RL Run (Sentiment Precomputed):274

The second notebook2 reproduces the reinforcement275

learning training pipeline using simulated sentiment276

data. This allows users to quickly test model dynamics,277

training cycles, and agent behavior with minimal com-278

pute (typically under 30 minutes).279

• Full Pipeline with Training: The third notebook3 com-280

bines the data scraping, sentiment extraction, and RL281

training into one integrated workflow. While compre-282

hensive, this notebook is compute-intensive and requires283

approximately 8 hours of runtime in a typical Colab Pro284

environment.285

This modular design offers both accessibility for quick ex-286

perimentation and full reproducibility of the long-term train-287

ing benchmarks presented in the paper.288

4 Financial Instruments289

Our portfolio consists both of equities and commodities, se-290

lected to ensure diversification across asset classes, regions,291

and economic drivers. Stock indices capture broad market292

dynamics and offer lower idiosyncratic risk, while commodi-293

ties reflect real-world supply-demand conditions, providing294

uncorrelated signals.295

1https://colab.research.google.com/drive/
1DLQIooP7kNYHztQ7tHu5eO9NPNDPxIrY?usp=sharing

2https://colab.research.google.com/drive/1FPX9
8z0X39Pg3tf1bSvoByEWbbQ juF?usp=sharing

3https://colab.research.google.com/drive/
1SbKGmPLjF2DAKkNwEYdfc 2lS2KWMySi?usp=sharing

4.1 List of Assets 296

To ensure sufficient market coverage and data diversity, the 297

portfolio includes both equities and commodities spanning 298

multiple geographic regions and economic sectors. Stock in- 299

dices serve as proxies for macroeconomic conditions across 300

developed and emerging markets, while commodities pro- 301

vide exposure to real asset dynamics and serve as potential 302

hedges during equity downturns. This combination supports 303

the training of reinforcement learning agents on heteroge- 304

neous data sources and enhances the model’s ability to gen- 305

eralize across financial regimes. 306

Table 1 summarizes the selected instruments along with 307

their corresponding tickers and asset class labels. These as- 308

sets were chosen based on liquidity, historical availability, 309

and relevance in global financial markets. 310

Ticker Asset Asset Class
GSPC S&P 500 Index Equities
IXIC NASDAQ Composite Equities
DJI Dow Jones Industrial Average Equities
FCHI CAC 40 (France) Equities
FTSE FTSE 100 (UK) Equities
STOXX50E EuroStoxx 50 Equities
HSI Hang Seng Index (Hong Kong) Equities
000001.SS Shanghai Composite (China) Equities
BSESN BSE Sensex (India) Equities
NSEI Nifty 50 (India) Equities
KS11 KOSPI (South Korea) Equities
GC=F Gold Commodities
SI=F Silver Commodities
CL=F WTI Crude Oil Futures Commodities

Table 1: Complete list of financial instruments used in the portfolio,
grouped by asset class.

4.2 Portfolio Constraints and Rules 311

Our experiment imposes strict rules to mimic realistic invest- 312

ment scenarios. 313

• Long-Only: We only buy assets, not sell them short. 314

Short-selling—borrowing an asset to sell, then repur- 315

chasing it later—adds complexity and risk (e.g. un- 316

limited losses if prices soar). A long-only approach 317

keeps things simpler and safer, aligning with conserva- 318

tive strategies. 319

• No Leverage: We invest only the capital we have, 320

without borrowing. Leverage amplifies gains but also 321

losses—borrowing $50,000 to add to a $100,000 port- 322

folio could double profits or wipe out the initial stake. 323

Avoiding leverage caps downside risk. 324

• Monthly Rebalancing: Every month, the RL agent re- 325

assigns weights to the 14 assets based on its policy. For 326

example, if gold surges, it might increase gold’s share 327

from 7% to 10%. This cadence balances adaptability 328

with practicality, as frequent trading incurs costs (ex- 329

cluded here for simplicity). 330

• Equal Initial Weights: At the outset, each asset gets 331

roughly 7.14% of the portfolio. This neutral start lets the 332

RL agent shape the portfolio without inherited biases. 333

https://colab.research.google.com/drive/1DLQIooP7kNYHztQ7tHu5eO9NPNDPxIrY?usp=sharing
https://colab.research.google.com/drive/1DLQIooP7kNYHztQ7tHu5eO9NPNDPxIrY?usp=sharing
https://colab.research.google.com/drive/1FPX9_8z0X39Pg3tf1bSvoByEWbbQ_juF?usp=sharing
https://colab.research.google.com/drive/1FPX9_8z0X39Pg3tf1bSvoByEWbbQ_juF?usp=sharing
https://colab.research.google.com/drive/1SbKGmPLjF2DAKkNwEYdfc_2lS2KWMySi?usp=sharing
https://colab.research.google.com/drive/1SbKGmPLjF2DAKkNwEYdfc_2lS2KWMySi?usp=sharing


These constraints ground the experiment in real-world334

norms, ensuring that AI decisions are practical and inter-335

pretable. To change those, it is possible to use the codes pro-336

vided in Section 3.4 and changing or taking out parameters337

(for leverage, take out the normalization step)338

4.3 Benchmarks for Performance Evaluation339

We measure our RL approach against two standards:340

• Equal-Weighted Portfolio: Each of the 14 assets gets341

7.14%, this gives an idea of the performance gains of342

the strategy compared to a simple buy and hold.343

• S&P 500 (GSPC): The most commonly used finan-344

cial benchmark in Portfolio Management. tracking U.S.345

market performance.346

Figure 2: Log evolution of Normalized Asset Prices vs Normalized
Equal weights (2003-2025)

We choose to model log evolution to get a grasp of a347

strongly varying financial context as provided in Figure 2.348

It would be hard to get a good idea of what is happening if349

using linear scales as markets change very strongly and very350

fast.351

5 Stable Baselines 3 Agents and Environment352

Setup353

We chose to use Stable Baselines 3 (SB3) [Raffin et al.,354

2021], a widely adopted Python library that implements state-355

of-the-art reinforcement learning (RL) algorithms on top of356

OpenAI Gym environments. Its modular design, ease of in-357

tegration, and support for policies make it well-suited for fi-358

nancial applications where agents must learn sequential allo-359

cation decisions.360

5.1 Action361

The action space is continuous, representing the portfolio362

weights for each asset. These weights must sum to 1 and363

be non-negative (no leverage, no short-selling), aligning with364

standard portfolio constraints. A continuous action space al-365

lows for precise adjustments, unlike discrete actions which366

would limit flexibility in allocation.367

5.2 Reward Function 368

The reward function guides the agent’s learning by balancing 369

multiple objectives: 370

• Return on Investment (ROI): Encourages higher port- 371

folio returns. 372

• Penalties: For high volatility and large drawdowns, dis- 373

couraging excessive risk. 374

We chose to attribute relative importance to each by a linear 375

combination:* 376

Reward = α1 ∗ROI − α2 ∗MDD − α3 ∗ σ
with the αi’s some real values defined depending on in- 377

vestor needs. For the results presented below, we used values 378

varying between 0.5 and 2 (giving a relative but still consis- 379

tent importance to each component, and severely punishing 380

MDD). 381

5.3 Overview of Agents 382

We employ four well-established reinforcement learning al- 383

gorithms tailored for continuous control in financial environ- 384

ments: Proximal Policy Optimization (PPO) [Schulman et 385

al., 2017], Soft Actor-Critic (SAC) [Haarnoja et al., 2018], 386

Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 387

2015], and Twin Delayed DDPG (TD3) [Fujimoto et al., 388

2018]. PPO offers stable on-policy learning via clipped up- 389

dates, while SAC encourages exploration through entropy 390

maximization in off-policy settings. DDPG leverages deter- 391

ministic policies for fine-grained action selection, and TD3 392

improves upon DDPG by mitigating overestimation bias with 393

dual critics and delayed updates. (See appendix for detail) 394

5.4 Backtesting 395

Backtesting evaluates the RL agents on historical data to as- 396

sess their performance. We test the agents on both the training 397

period (2003–2017) and unseen data (2018–2024) to measure 398

their ability to generalize beyond the training set. 399

5.5 Seeds 400

To ensure reproducibility, we use fixed consecutive seeds for 401

all experiments. Seeds control the randomness in the environ- 402

ment and algorithms, allowing consistent results across runs. 403

6 Hierarchy Structure 404

6.1 Why Use Hierarchy Structures in AI? 405

Hierarchical Reinforcement Learning (HRL) enhances port- 406

folio optimization by decomposing decision-making into 407

manageable components, improving interpretability, scalabil- 408

ity, and stability [Sutton et al., 1999]. Base agents specialize 409

in quantitative financial metrics or qualitative NLP-derived 410

sentiment scores [Li et al., 2021], enabling clear, traceable 411

decisions. Meta-agents aggregate these outputs into cohesive 412

strategies [Kulkarni et al., 2016], ensuring transparency and 413

ease of adjustment. This structure scales efficiently for larger 414

portfolios or additional data types without excessive compu- 415

tational complexity, while meta-agents stabilize decisions by 416

smoothing erratic actions, reducing portfolio volatility in dy- 417

namic financial markets [Jiang et al., 2017]. 418



6.2 Environment Setup419

Two distinct hierarchies are established within the HRL420

framework. The first hierarchy consists of Natural Language421

Processing (NLP)-based agents, while the second is data-422

driven agents. By separating these tasks, the framework en-423

sures that each base agent specializes in a specific data modal-424

ity, producing traceable and interpretable recommendations.425

A naive approach to combining base agent outputs might426

involve computing a weighted average of their recommenda-427

tions for asset allocations in a given month. However, such428

statistical methods fail to account for the strengths and weak-429

nesses of individual agents, limiting their ability to adapt to430

complex market conditions. Weighted averages or similar nu-431

merical methods lack the capacity to learn dynamically from432

agent performance, reducing their effectiveness in volatile fi-433

nancial environments. This limitation underscores the need434

for a more sophisticated aggregation strategy that can learn435

optimal policies over time [Jiang et al., 2017].436

To address this, we design a custom reinforcement learning437

environment implemented in PyTorch, where a meta-agent438

receives an observation vector formed by concatenating the439

proposed action vectors from each base agent across different440

seeds and layouts (NLP-based or data-driven). Each action441

vector represents a recommended weight allocation for assets442

in the portfolio. The meta-agent processes this observation443

vector and outputs a final action vector, which is a weight444

allocation ensuring that the portfolio. This hierarchical struc-445

ture allows the meta-agent to learn how to weigh the contribu-446

tions of base agents dynamically, improving decision-making447

in dynamic financial markets [Kulkarni et al., 2016].448

Both base and meta-agents are trained on historical finan-449

cial data spanning 2003 to 2017, a period that includes diverse450

market conditions such as the 2008 financial crisis [Brunner-451

meier, 2009]. The training process enables agents to learn op-452

timal policies through interaction with the environment. The453

performance of the HRL framework is evaluated on a sepa-454

rate testing period, ensuring robustness and generalizability.455

[Jiang et al., 2017].456

The meta-agent is modeled as a three-layer fully connected457

neural network with compounded ReLU activations and a fi-458

nal softmax output layer:459

fθ(Xt) = Softmax (A3 (ϕ (A2 (ϕ (A1 (Xt)))))) (9)
where:460

• Xt is the observation vector at time t, aggregating ac-461

tions from base agents,462

• Ai(x) = Wix+ bi for i = 1, 2, 3 are affine transforma-463

tions (weights and biases),464

• ϕ(x) = ReLU(x) = max(0, x) is the activation func-465

tion,466

• The final softmax layer ensures the output forms a valid467

allocation (i.e., non-negative weights summing to 1).468

This compact architecture, inspired by deep reinforcement469

learning [Mnih and others, 2015], enables the meta-agent to470

learn flexible mappings from base agent outputs to portfo-471

lio allocations, while maintaining both structure and inter-472

pretability.473

7 Final Super Agent 474

In this section, we introduce the final super agent, which 475

serves as the top-level decision-maker in our HRL structure. 476

The super agent aggregates insights from lower-level meta- 477

agents to determine the optimal portfolio allocation as ex- 478

plained in Algorithm 2 479

Algorithm 2 Training Super-Agent using PyTorch

Require: Trained base RL agents {Ametadata, AmetaNLP },
training dataset Dtrain, learning rate α, epochs E

Ensure: Trained Meta-agent
1: Initialize PyTorch neural network fθ with random

weights
2: Define loss function L(θ) = 1

B

∑B
i=1 ∥fθ(Xi)− w∗

i ∥2
3: Define optimizer Adam(θ, α)
4: Collect training data:
5: for each time step t in Dtrain do
6: Compute base agent decisions w(i)

t = Ai(Xt) for all
agents

7: Simulate future portfolio value for each w
(i)
t over H

steps (lookahead reward)
8: Select the best action w∗

t = argmax
w

(i)
t

∑t+H
j=t Rj

9: Store training sample (Xt, w
∗
t )

10: end for
11: for each epoch e in {1, ..., E} do
12: Shuffle training data
13: for each batch B in training set do
14: Compute predictions ŵB = fθ(XB)
15: Compute loss L(θ)
16: Update model: θ ← θ − α∇θL(θ)
17: end for
18: end for
19: Return trained model fθ

Aggregation and Observation Vectors 480

The observation vector for the super agent consists of the 481

portfolio weights proposed by the meta-agents. Specifically, 482

it includes: 483

• The weights suggested by the data-driven meta-agent, 484

which focuses on quantitative metrics. 485

• The weights suggested by the NLP-based meta-agent, 486

which incorporates sentiment analysis. 487

This observation vector allows the super agent to ”see” the 488

recommendations from both perspectives, enabling it to 489

make a well-rounded decision by balancing numerical data 490

and market sentiment. 491

492

We use the same structure as the meta-agents for this agent. 493

The only changing variable is the input, which is now the 494

concatenated action vectors of the two meta agents. This 495

structure stongly mimics a common way in financial markets, 496

comparing market sentiment to current state and finding dis- 497

respencies is what gives financial actors an edge. We can see 498

the data based meta agent as a market analyser and the NLP 499



based one as a conviction giver. This gives a direction from500

which traders can benefit.501

8 Summary of results502

Table 2 gives the reader an overview of the final results. As503

presented below, all meta agents beat benchmarks over the504

testing period and the super-agent seems to be implement a505

very strong strategy.506

Agent/Benchmark ROI (%) Sharpe Volatility (%)

Equal-Weights 7.5 0.57 13.3
S&P 500 13.2 0.63 19.7

Meta-Agent (Metrics) 14.7 0.8 16.0
Meta-Agent (NLP) 20.5 1.2 16.0

Super-Agent 26.0 1.2 20.0

Table 2: Performance of super-agent vs. benchmarks and meta-
agents (2018–2024).

Table 3 provides a granular analysis of all agents, note that507

the results for base agents are the median out of the 5 seeds508

tested.509

Agent Annualized ROI (%) Annualized Sharpe Annualized Volatility (%)
Equal-Weights Portfolio 7.5 0.57 13.3

S&P 500 13.2 0.63 19.7

PPOmetrics 12.9 0.6 18.0
SACmetrics 9.4 0.6 10.4
TD3metrics 16.5 0.8 21.3

DDPGmetrics 10.9 0.5 18.4
Meta-Agentmetrics 14.7 0.8 16.0

PPONLP 14.8 1.0 13.4
SACNLP 9.1 0.9 10.0
TD3NLP 17.5 0.8 19.2

DDPGNLP 12.9 0.7 18.0
Meta-AgentNLP 20.5 1.2 16.0

Super-Agent 26.0 1.2 20.0

Table 3: Analysis of Results for Agents and Benchmarks.

Comparison with State-of-the-Art RL Strategies510

To contextualize our framework’s performance, Table 4 com-511

pares our meta-agents and super-agent with recent RL-based512

portfolio optimization strategies from academic literature.513

We compare our results to the 2024 study [Espiga-Fernández514

et al., 2024], and against the deep RL framework [Jiang et515

al., 2017]. Closely competing with CNN-RL (22.0% ROI,516

1.3 Sharpe), our super agent seems to have surpassed the cur-517

rent state of the art. Furthermore, the consistent superiority518

of NLP augmented agents goes to confirm the results of [Xu519

and Zhou, 2018].520

The super-agent’s ROI of 26.0% demonstrates the effec-521

tiveness of the hierarchical approach, integrating quantitative522

metrics and sentiment analysis via NLP to outperform bench-523

marks and individual meta-agents. The strong performance of524

NLP-based agents, particularly TD3NLP and Meta-AgentNLP,525

underscores the value of sentiment-driven decision-making.526

9 Conclusion and Future Directions527

This paper introduces an innovative hierarchical reinforce-528

ment learning (RL) framework for portfolio optimization, in-529

Strategy Annualized ROI (%) Sharpe Ratio Volatility (%)

Meta-Agent (Metrics) 14.7 0.8 16.0
Meta-Agent (NLP) 20.5 1.2 16.0
Super-Agent 26.0 1.2 20.0

DQN [Espiga-Fernández et al., 2024] 26 0.8 38
DDPG [Espiga-Fernández et al., 2024] 20.0 0.7 37
PPO [Espiga-Fernández et al., 2024] 19 0.8 25

CNN-RL [Jiang et al., 2017] 22.0 1.3 19.5
RNN-RL [Jiang et al., 2017] 19.5 1.1 18.5
LSTM-RL [Jiang et al., 2017] 21.0 1.2 19.0

Table 4: Comparison of meta-agents and super-agent with state-of-
the-art RL-based portfolio optimization strategies.

tegrating structured financial indicators with sentiment sig- 530

nals extracted from financial news using lightweight, domain- 531

specific large language models (LLMs) such as FinBERT. 532

The framework leverages a three-tier multi-agent architec- 533

ture—comprising base agents that process hybrid data, meta- 534

agents that aggregate these decisions, and a super-agent that 535

synthesizes final portfolio allocations—enabling adaptive, in- 536

terpretable, and robust decision-making in dynamic market 537

environments. 538

However, the current implementation has limitations. It 539

assumes synchronously available data inputs, which may 540

not align with real-world asynchronous market conditions. 541

Transaction costs are excluded, potentially overestimating 542

practical returns, and the system has not been tested under 543

adversarial or extreme market scenarios. Additionally, sen- 544

timent signals derived from financial news, while beneficial, 545

may introduce noise or biases reflective of media perspec- 546

tives, which could affect decision accuracy. 547

To overcome these shortcomings, future research will pur- 548

sue several enhancements: 549

• Asynchronous Data Integration: Incorporating real-time 550

and asynchronous data streams to better reflect market 551

dynamics. 552

• Transaction Cost and Stress Testing: Adding transaction 553

cost modeling and evaluating performance under adver- 554

sarial conditions to improve real-world applicability. 555

• Expanded Text Corpus: Broadening the sentiment anal- 556

ysis by including diverse sources such as earnings calls, 557

regulatory filings, and social media. 558

• Larger LLMs Exploration: Comparing the efficacy 559

of lightweight, domain-specific LLMs against larger, 560

general-purpose models (e.g., GPT, Claude, LLaMA) to 561

assess scalability and performance trade-offs. 562

• Possibility of strategy developments using other finan- 563

cial tools (End of month expiring options, Futures, Per- 564

petuals, etc) 565

These advances aim to refine the robustness and generaliz- 566

ability of the framework, making it more suitable for practical 567

deployment. 568
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