
Bridging Natural Language Understanding, Symbolic Planning, and Robotic
Execution through Hybrid AI Systems

Luis Palacios Medinacelli1 , Matteo Morelli1 , Gaël de Chalendar1 , Mykola Liashuha1 , Jaonary
Rabarisoa1 , Lucas Labarussiat1 , 1 and Raphaël Lallement 1

1Université Paris-Saclay, CEA, List. Palaiseau, France
{luis.palacios, matteo.morelli, gael.de-chalendar, mykola.liashuha, jaonary.rabarisoa, lucas.labarussiat,

raphael.lallement }@cea.fr

Abstract

The integration of hybrid AI technologies, specifi-
cally Symbolic AI and Generative AI, has the po-
tential to create more robust systems capable of ad-
dressing problems that neither approach can solve
independently. LLMs enable human-like inter-
actions with artificial systems by leveraging vast
amounts of encoded ”common sense” knowledge.
However, these models often lack certainty, explicit
rules, and the ability to incorporate domain-specific
knowledge effectively. In this work, we explore and
demonstrate the feasibility of combining the rea-
soning capabilities of Symbolic AI with the natu-
ral language understanding and contextual reason-
ing strengths of LLMs. We apply our approach to a
robotic pick-and-place use case, where LLMs inter-
pret user commands expressed in natural language
to infer PDDL goals, enabling classical planning
and execution by a robot system. By combining
these technologies, not only we increase the scope
of the system’s solving capabilities but also en-
able controlled behavior of the LLM using domain-
specific knowledge. We present a proof of concept
(PoC) implementation to concretely demonstrate
these claims, bridging existing theoretical discus-
sions with a practical robotic application. Our re-
sults highlight how the hybrid approach expands
the scope of solvable tasks and ensures greater in-
terpretability and control.

1 Introduction
Recent advancements in Large Language Models (LLMs)
have enabled more human-like interactions with AI systems
by leveraging extensive ”common sense” knowledge encoded
in natural language. However, these models face notable lim-
itations, including a lack of certainty, explicit rule-based rea-
soning, and integration of domain-specific knowledge. These
deficiencies restrict their ability to perform structured and
precise tasks required in many practical applications.

Symbolic AI, in contrast, excels in tasks requiring explicit
domain knowledge, deterministic rules, and interpretability.
While powerful within its scope, Symbolic AI struggles with

natural language understanding and lacks the ability to reason
flexibly about open-ended problems.

Our work explores the integration of Large Language
Models (LLMs) and Symbolic AI for planning in robotics.
We present a hybrid system where LLMs interpret natural
language (NL) descriptions to infer PDDL goals, enabling
classical planning and execution in robotic domains. Our
pipeline ensures seamless interaction between natural lan-
guage, AI planning, and actuation, with feedback loops en-
hancing transparency and robustness. The approach allows
the integration of contextual reasoning and natural language
understanding (via LLMs) with the structured reasoning and
precision of Symbolic AI (PDDL). This combination enables
systems to expand the range of solvable tasks while simul-
taneously enhancing control and interpretability through ex-
plicit symbolic representations. In this paper we highlight the
contributions our approach and validate its effectiveness with
a proof-of-concept implementation.

Our main contributions are:

• Goal Interpretation: Demonstrate how Large Language
Models (LLMs) can flexibly interpret and infer nuanced
goals from natural language descriptions, showing their
capabilities go beyond simple translation.

• Hybrid AI Workflow: Integrate LLMs with symbolic
planners and robotic systems to establish a controlled,
interpretable process for goal setting and execution.

• Proof-of-Concept (PoC) Validation: Demonstrate the
feasibility of the approach by implementing and end-to-
end system and running initial experiments in robotics
tasks.

The remainder of this paper is organized as follows: Sec-
tion 2 describes our approach, our methodology and depicts
the system architecture. Section 3 shows a first set of exper-
iments, aimed to showcase the ways the system can be used
and how some of the latest open-source LLMs perform when
integrated in our pipeline. Section 4 reviews related work,
highlighting the theoretical basis for combining Symbolic AI
and LLMs, with focus on planning. Section 5 discusses the
broader implications of this work and outlines directions for
future research.



2 Approach
The approach has been developed as part of a larger project
named ”Magicoders”, at our research institution. The project
was aimed at exploring the use of generative AI (GenAI) in
robotics, in particular LLMs and VLMs. One of the veins of
research was the use of GenAI for planning in robotics. A
classic approach to planning in symbolic AI is the Planning
Domain Definition Language (PDDL) [Aeronautiques et al.,
1998]. PDDL version 2.1 [Fox and Long, 2003], which intro-
duced support for time and numeric resources, was used in the
Third International Planning Competition (held in 2002). We
adopt this version for our approach. PDDL is based on first-
order logic (FOL) and enables the description of a domain of
interest (e.g., goods distribution, pick-and-place tasks, etc.)
in terms of the objects and actions relevant to that domain.
A PDDL problem consists of a PDDL domain and an initial
state (the initial configuration of objects). Given a goal state
(a desired final arrangement), a PDDL solver attempts to find
a finite sequence of actions that transforms the initial state
into the goal state. If such a sequence exists, it is called a
plan and it is a solution for the PDDL problem. An example
of some of the PDDL elements can be found in section 2.2.

In this context, as depicted in figure 1, the project consid-
ers a robotic arm, and a set of objects (e.g. cubes) to be ar-
ranged depending on the user’s instructions. The system is
made aware of the initial state of the scene, using a VLM,
and then awaits a description from the user, of what the goal
state should be.

The user expresses then the goal (as speech or text) which
should talk about a new arrangement of the objects in the
scene. This intention is then passed to a LLM component
whose job is to provide an interpretation of the user’s inten-
tion in terms of the PDDL domain, and express it as a PDDL
goal. Here the semantics of the PDDL domain, the objects,
the predicates, the possible actions, and the terminology have
to be respected to provide a coherent goal. Thus, it is no triv-
ial task.

Take for example a set of cubes placed on a table. If we
want to ”make a tower with all the cubes”, we could inter-
pret this goal as placing the cubes on top of each other. This
answer is far from the format a PDDL solver can use, and
more importantly there are many uncertainties and ambigu-
ities in the formulation of the goal that can’t be determinis-
ticaly harmonized with a PDDL formulation. Yet, a person
with knowledge about PDDL and looking at the scene might
arrive to the conclusion that the cubes should be placed on top
of each other, and then use the objects declared in the PDDL
problem formulation along with the ”affordable” actions de-
fined in the PDDL domain, to formulate a valid PDDL goal
and feed it to a solver. This complexity is handled in our ap-
proach relying on a LLM.

If the goal or the interpretation is flaw, the user can then
”interact” (chat) with the system to steer it and arrive to the
desired (or acceptable) result.

Once a valid goal is attained, it is then easily coupled with
the PDDL domain and the PDDL formulation of the initial
state, to search for a plan. This is done relying on a classic
PDDL solver (see section 2.3) and, if a plan is found (it can

be the case that even though the goal’s syntax is proper, there
might not exist a plan to achieve it), it is fed to the execu-
tion layer. The execution layer contains a mapping from the
possible actions in the PDDL domain, to basic robotic skills.
(e.g. pick, place, stack, unstack). Thus in principle any plan
found is executable by the robot. Thus, once the PDDL goal
is formulated, if a plan is found, then there is a guarantee that
the current state of the system can be changed into the goal
state. This guarantee can not be given by the LLM component
alone.

In the following we present the stages of the approach.

2.1 Scene Semantization
Scene semantization is a crucial component in a robotic task
planning pipeline. Its role is to transform sensed data coming
from the perception systems into a symbolic representation of
robot’s operational environment. In the workflow of Figure 1,
the scene semantization component produces the initial state
(init) of PDDL problem model, where object instances con-
form to object types of the domain model, as well as the list
of predicates which are true. In our current implementation,
it is made up of two parts. First, a Visual Language Model
(VLM) module, which uses a carefully designed prompting
strategy to adapt a pre-trained model (specifically InternVL
2.5) to the specific concepts of our domain model, therefore
avoiding the need of fine-tuning the VLM on task-specific
data. Second, a software module, which processes the scene
description produced by the VLM in JSON format and trans-
lates it to a syntactically consistent PDDL init section of the
problem model.

An in-depth description of the scene semantization com-
ponent is beyond the scope of this paper. In addition, other
approaches are possible. The investigation is on-going and
will be subject of future publications.

2.2 Goal Interpretation and Formulation
We have chosen a classic a PDDL domain from the 2nd Inter-
national Planning Competition (2000) 1. The domain, called
”blocks world” includes the main actions and predicates for a
pick-and-place scenario. Specifically the domain considers:

• Objects: The domain considers only 1 type of object:

– block

• Predicates: It considers

– a binary predicate: (on ?x - block ?y - block),
– three unary prediactes: (ontable ?x - block), (clear

?x - block), (holding ?x - block)
– and a 0-arity predicate, to establish that the robot

arm’s is free: (handempty)

• Actions: Four actions, along with their preconditions
and effects to manipulate the blocks:

– pick-up
– put-down
– stack

1https://github.com/potassco/pddl-instances/blob/master/ipc-
2000/domains/blocks-strips-typed/domain.pddl



Figure 1: The workflow and components of the approach. From the left to right: A scene composed by a robotic arm and a set of objects,
is captured and interpreted by a VLM, providing a semantic description of the scene. This is expressed in terms of the PDDL Domain, and
fed to the ”BACK-END” module. This module centralizes the processes and keeps track of the workflow. A user (bottom left) expresses in
natural language a rearrangement of the objects in the scene. This intention is interpreted by an LLM, to generate a PDDL goal. The initial
state, along with the goal and the PDDL domain are then used to produce a PDDL problem, that can be processed by a solver. The output of
the solver is a plan, expressed as a sequence of actions belonging to the domain. This plan is then passed to the execution layer. In the case
of the RobotArm2 setting, the backed directly produces actuation instructions, bypassing the PDDL solver. Finally, a post-execution module
enables feedback in case the execution of the plan fails.

Figure 2: The GUI of the PoC.

– unstack

The PDDL domain, represents knowledge and an interpre-
tation on how the actions should be applied along with the
conditions that define their affordability. For example, to un-
stack a block, it mus be clear (i.e. no block can be stack on
top of it), therefore to move a block in the middle of a pile
of blocks, we first have to unstack the upper blocks. This
behaviour, which could be crucial for some domains, is en-
coded in PDDL. The expected results and the intended mean-
ing of domain specific actions are formally and unambigu-
ously established in the PDDL domain. These are the features
we want to propagate to the behaviour of the hybrid system
(traceability and guarantees about the result). A human, or an
”intelligent robot”, when asked to clear a block in the middle
of a pile, could just pick the middle cube, along with all the

cubes already stuck on top of it and place it on the table. This
would result in a goal successfully achieved (i.e. the block is
clear), but the implicit understanding that upper cubes should
be unstuck first is not necessarily guaranteed.

In our approach we make the following considerations:

• we assume that the PDDL domain is given: this im-
plies the vocabulary, the types of objects, the possible
predicates to describe the scene, the actions, their pre-
conditions and effects. All must be known to the sys-
tem/agent/LLM.

• the goal must talk about the objects already in the scene
(no new objects, no inexistent objects) and must be ex-
pressed in terms of the PDDL domain.

• the interpretation of the intended meaning of the goal
may carry imperfections, and thus the user is allowed to
interact with the system (see figure 2), so that the system
can correct itself to come out with an acceptable version
of the goal.

• the user is not expected to type or edit the goal directly,
but to interact with the system (via prompting) so that
the system itself comes out with the intended goal, and
thus the hybrid system behaves as a whole. This is a
design choice and it could be adapted depending on the
use-case.

2.3 Planning
Planning is done in our approach by a classic PDDL solver.
In our case we relied of PROBE2 as a solver, which is an
open source, PDDL2 compliant solver. PROBE can be com-
piled as a command-line linux-executable, which is used as a

2https://github.com/aig-upf/probe



”black-box” whose inputs are a PDDL problem and a PDDL
goal. The output of PROBE is a plan, if it exists (and if it can
be found within a time limit), or a failure. The failure could
be: there is no plan, where the formulation of the goal is triv-
ial or unachievable; or an error message. Otherwise a valid
plan is returned, that is, a linear sequence of PDDL actions
represented by (usually grounded) predicates. This sequence
is then fed to the execution layer, which ”understands” the
actions and can execute them.

In this fashion, we ensure that the found plan:

• is expressed in terms of the PDDL domain

• is a valid PDDL.2 plan

• it guarantees the transformation of the initial/current
state into the final/goal state. This, of course, under the
assumption that no external factors affect the states or
the execution.

It is to be noted that in our approach we did not target to
obtain the best NL2PDDL LLM model, or train a LLM for a
specific planning domain. In our work we focus on the inter-
action of hybrid approaches (LLM+PDDL) and on the means
of control and conditioning of the interaction and output of
the LLM, brought by the symbolic AI component of the sys-
tem.

Among the main features symbolic AI contributes to the
system we find:

• Guaranteed plans: If a plan is found, then there is a guar-
antee that the initial state can be transformed into the
final state.

• Unambiguity and Explainability: The description of the
domain, the scene, the objects and their interactions are
well understood and traceable.

• Reusability: Symbolic knowledge, domains, plans, etc.
are easily transferable to other systems concerned by the
same or similar domains.

2.4 Execution Layer
The execution layer is the part of the robotic system in charge
of executing the sequence of actions computed by the task
planner to reach the goal state. Our implementation uses a
modular, component-based and skill-oriented execution ar-
chitecture. Skills are software components that organize
robotic algorithms’ functionality (motion planning, trajectory
following, object manipulation, visual perception, etc.) and
expose it to higher-level task and mission specification mod-
ules. Skills are of two types, atomic or composite. Atomic
skills bind directly to the algorithmic modules, while com-
posite skills are composed of lower-level skills which can be
composite and/or atomic. Composite skills are organized into
sequences using policies Behavior Trees, although other for-
malisms like Finite State Machines can also be used.

Each of the actions in the PDDL domain, has a correspond-
ing primitive (or composed) skill in the execution layer. This,
seemingly evident, requirement is very important for the de-
velopment of the approach. The PDDL domain and its termi-
nology provide the basis for expressing the goal, and more-
over establish what actions can be used by an actuator. This

coherence has to be preserved all along the workflow, settings
and interactions of the system. If either the domain or the ex-
ecution layer were to evolve or be modified independently,
the coherence could be lost and the approach would fail. The
synchronization, automation, reformulation and aggregations
of the robotic skills with the PDDL domain constitute cur-
rent and future work, to make the approach more robust and
adaptable to different scenarios and requirements.

As for the current approach, 3 execution settings have been
tested, 2 that consume the plan and sequence of actions gen-
erated in the previous stage (a simulator and a robot arm), and
1 end-to-end approach (a VLM bypassing PDDL).

Each one of these settings presents it own challenges, pe-
culiarities and opportunities. Yet, their full details fall out of
the scope of this paper, we briefly mention them to provide
context and completeness to our report.

3 Experiments
As stated before, this work is both innovative and in current
progress. The interdisciplinary nature of our work opens sev-
eral directions to evaluate and exploit. The current paper fo-
cuses on what, to our view, are some of the most relevant
features in such a hybrid system. To this end we have es-
tablished two sequences of tasks, which use natural language
terminology and common sense notions to express the goal.
This interpretation is collapsed by an LLM into the vocabu-
lary of the PDDL domain and restricted to its semantics.

Success or failure in our case is given by 1) the appropriate
interpretation of the scene and the goal, using generative AI,
and by 2) the correctness, feasibility and executability of the
produced plan.

Figure 3: The scene for the experiments.

The scenario of the experiments is illustrated in figure 3
and involves a set of colored cubes and a robotic arm. Intu-
itively, the user looks at the scene and describes how the cubes
should be arranged (as the goal). The system interprets this



requirement, produces a plan and this plan is then executed
by the robot arm.

3.1 The tasks
The first task tests the ability to re-interpret loosely defined
goals in terms of the specific domain, and use general features
and descriptions (like color and position) to define the goals.
Additionally, we want to show that the execution does respect
the rules and intended meaning of the PDDL domain.

1. Task 1:
(a) Make a tower with all cubes.
(b) Spread all the cubes on the table.
(c) Make a tower with all cubes except the red one, and

where the blue cube is on the bottom.
(d) Exchange the blue cube by the red one.

2. Task 2:
(a) Make two towers with 2 cubes each, choose the

cube colors yourself.
(b) Exchange the cubes on top of the towers.

3.2 Results
We tested the system with two different settings (see Figure
4) for the scene description: using a simulator (PyBullet 3)
and using a VLM to describe the scene, and for each setting
we have tested 3 LLMs, deployed locally.

The results of the experiments can be seen in figure 4,
where for each experiment we test the same sets of tasks (sec-
tion 3.1) combining: a) a setting for the scene description
(VLM or virtual/simulator) and b) a LLM (Ollama, Mistral,
DeepSeek), thus the 6 experiments. The results can be found
in the columns:

• INIT : whether the description of the initial state was
correct.

• GOAL: whether the goal was interpreted as a correct
PDDL goal.

Generative AI analysis
As shown in Figure 4, Mistral and OLLama, performed quite
well on simple instructions and both succeeded on providing
a valid and sound goal for task 1. Interestingly for task 2
they had problems, mainly interpreting the two towers with
two cubes each, as a correct PDDL goal. DeepSeek failed
the most, but not necessarily because it did not understand
the task, or because is not capable, but it tends to provide
long answers which are verbose and with exceeding analysis
in the output. It was ”avoiding’ to provide a straight answer.
Although this might be improved with prompt engineering
and fine tuning, this remains out of the scope of this paper
and remains as open question for direct further research.

There were some interpretations where the goal was syn-
tactically correct, but not semantically. We find that even hu-
mans could interpret these differently. Also the PDDL ver-
sion and its variants depend on the intended meaning, ex-
pected format and PDDL solver. Sometimes the LLM would
do a ”too good” job (i.e. including variables and placehold-
ers) that needed to be downsized.

3https://pypi.org/project/pybullet/

Symbolic AI analysis
Once the goal was syntactically correct it could be the case
that it does not express a valid goal, or that it is unattainable.
The solver in this case would provide a ”no- plan”, or trivial
response. This information can be used to rephrase the goal,
change it or find faults.

If the goal does indeed represent the intended meaning, is
feasible and well formed, then the solver tries to find a plan.
If a plan is found, then there is a formal guarantee that the
initial state can be transformed into the final state, using the
set of actions defined in the domain. That is, if we consider
in the world representation only the elements of the current
state of the scene (initial state) in terms of the domain, the
goal will succeed.

This guarantee is important for safety-critical domains,
and is a PoC of the controlled behaviour we can impose on
LLMs/GenAI using background knowledge. It is important
to note here, that this analysis and results apply regardless
of the chosen LLM. Thus the background knowledge can be
’plugged-in’ into any general-purpose or fine-tuned LLM,
while respecting the guarantees.

4 Related Work
In this section we provide a review of the most relevant re-
search related to planing using PDDL and LLMs.

In [Guan et al., 2023], the authors investigate a two-phase
pipeline for planning by engaging LLMs to generate PDDL
models from natural language, then having classical solvers
plan from these generated models. The authors establish that
GPT-4 can make complex domains, containing more than 40
actions, and that in the case where the model is corrected and
validated, these models can produce valid solutions to plan-
ning problems. Therefore, the authors’ pipeline shows LLMs
can significantly reduce the burden of specifying formal do-
mains by hand.

In [Xie et al., 2023] the autors note that while LLMs excel
at many natural language processing tasks, they struggle with
accurate reasoning and planning. Their work investigates
whether LLMs can translate human-specified goals in natu-
ral language into structured planning language. Experiments
using GPT-3.5 variants show that LLMs are more effective at
translation than planning, successfully inferring missing de-
tails in under-specified goals using commonsense reasoning.
However, they still face challenges with tasks requiring nu-
merical or spatial reasoning and are sensitive to prompt de-
sign. Overall, LLMs show promise for goal translation in
planning systems, though limitations remain.

In the work of [Liu et al., 2023] the authors argue that even
though LLMs have shown impressive zero-shot capabilities
in natural language tasks, they still struggle with long-horizon
robot planning problems. In contrast, classical planners can
efficiently generate optimal plans when provided with struc-
tured input. To bridge this gap, their work presents a frame-
work (LLM+P) that combines the language understanding
strengths of LLMs with the planning efficiency of classical
methods. LLM+P translates natural language problem de-
scriptions into PDDL, uses a classical planner to find a so-
lution, and then converts the resulting plan back into natural



Figure 4: Experiments

language.
The work in [Oswald et al., 2024] states that Large lan-

guage models (LLMs) have shown strong capabilities in gen-
erating structured outputs from natural language, prompting
interest in their use for knowledge engineering tasks such as
domain model creation in symbolic AI. Since manually build-
ing planning domain models remains a bottleneck in auto-
mated planning, their work explores whether LLMs can gen-
erate accurate PDDL domain models from simple textual de-
scriptions. A framework is introduced to evaluate these mod-
els by comparing sets of generated plans, and an empirical
study is conducted across seven LLMs and nine planning do-
mains. Results show that high-parameter LLMs can moder-
ately succeed in generating valid planning domains, suggest-
ing promise for reducing human effort in symbolic problem
representation.

As LLMs continue to demonstrate impressive reasoning
and decision-making abilities, their potential for enhanc-
ing autonomous agent planning has gained significant atten-
tion. The survey in [Huang et al., 2024] provides a system-
atic review of LLM-based agent planning, focusing on re-
cent advancements aimed at improving planning capabilities.
In their work a taxonomy is proposed categorizing existing
works into five key areas: Task Decomposition, Plan Selec-
tion, External Modules, Reflection, and Memory. A thorough

analysis is provided for each category, along with a discussion
of ongoing challenges in the field. For further details and in-
depth discussion, the interested reader is referred to the full
survey, which also evaluates the advantages and limitations
of current methodologies in LLM-based planning.

Symbolic task planning is a widely used method for en-
abling robot autonomy, but it struggles [Capitanelli and Mas-
trogiovanni, 2024] in dynamic, real-world human-robot col-
laboration scenarios, especially when frequent re-planning or
long-term plan validity is required. To solve these challenges,
the authors introduce Teriyaki, a framework that bridges sym-
bolic task planning with machine learning approaches. By
training LLMs, specifically GPT-3, to function as neurosym-
bolic planners compatible with PDDL, Teriyaki aims to ad-
dress the limitations of traditional symbolic planners. Key
benefits include improved scalability with increasing domain
complexity and the ability to generate plans incrementally,
enabling concurrent planning and execution.

In [Silver et al., 2024], they examine how large language
models can be generalized in classical planning settings.
They propose a hybrid protocol that combain GPT-4 to syn-
thesize domain-specific Python planners from PDDL descrip-
tions and a small number of training tasks. Their approach
combines chain-of-thought prompting, natural language strat-
egy design, and iterative self-debugging, resulting in strong



generalization across multiple domains. While the LLM op-
erates autonomously, their setup is heavily scaffolded, indi-
cating the importance of feedback and structure in guiding
planning capabilities.

In [Valmeekam et al., 2023], the criticisms of LLMs are
present in their assessment of LLMs on classical planning
tasks. They draw a distinction between both autonomous and
heuristics and argue that even if LLMs do not independently
create valid plans, the responses can be useful heuristics when
incorporated in symbolic planners. In the end, they conclude
that hybrid approaches that utilize LLM to help symbolic sys-
tems are much better than LLM systems by themselves.

5 Conclusions and Further Work
We have presented our current research and approach, with
focus on hybrid plannig with LLMs. Our work, comprised
in a larger setting, requires and relies on scene interpretation
as its input, and is intended to be used by an actuator in the
next step in the workflow. As such, it is an interdisciplinary
work (planning, robotics, formal languages, NLP, machine-
learning).

We show via our PoC, that hybrid planning enhances clas-
sic planning and pure generative-AI based planning with flex-
ibility, robustness, traceability and certain guarantees.

We emphasize that the work is not a LLM benchmarking,
but that we rely on generic and open-source LLMs. The
choice lies on the fast advancing pace, the training costs
and the large customisation available for these models. We
look for an approach where a LLM (specific or not) can be
”plugged-in” and where the whole hybrid system will still
preserve its properties. Thus, since the tendency is to find
each time smaller LLM models, with better and better capa-
bilities, we expect that our approach can only improve. We
do not tackle the LLMs improvement at this point, but their
control, manipulation and interaction to solve complex tasks
in a hybrid setting.

We also consider that in order to keep up with the fast pace,
provide relevant contributions and obtain valuable feedback,
divulgation of ongoing results and their discussion are essen-
tial.

6 Acknowledgments
This work has been partially funded by the ”AI-Augmented
Software Engineering for Intelligent Robotics” (ASTIR)
project, under the Horizon Europe, European Program for Re-
search and Innovation.

References
[Aeronautiques et al., 1998] Constructions Aeronautiques,

Adele Howe, Craig Knoblock, ISI Drew McDermott, Ash-
win Ram, Manuela Veloso, Daniel Weld, David Wilkins
Sri, Anthony Barrett, Dave Christianson, et al. Pddl— the
planning domain definition language. Technical Report,
Tech. Rep., 1998.

[Capitanelli and Mastrogiovanni, 2024] Alessio Capitanelli
and Fulvio Mastrogiovanni. A framework for neurosym-
bolic robot action planning using large language models.
Frontiers in Neurorobotics, 18:1342786, 2024.

[Fox and Long, 2003] Maria Fox and Derek Long. Pddl2. 1:
An extension to pddl for expressing temporal planning do-
mains. Journal of artificial intelligence research, 20:61–
124, 2003.

[Guan et al., 2023] Lin Guan, Karthik Valmeekam, Sarath
Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize
world models for model-based task planning. Advances in
Neural Information Processing Systems, 36:79081–79094,
2023.

[Huang et al., 2024] Xu Huang, Weiwen Liu, Xiaolong
Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng
Wang, Ruiming Tang, and Enhong Chen. Understand-
ing the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716, 2024.

[Liu et al., 2023] Bo Liu, Yuqian Jiang, Xiaohan Zhang,
Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal
planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

[Oswald et al., 2024] James Oswald, Kavitha Srinivas, Har-
sha Kokel, Junkyu Lee, Michael Katz, and Shirin Sohrabi.
Large language models as planning domain generators.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 34, pages 423–
431, 2024.

[Silver et al., 2024] Tom Silver, Soham Dan, Kavitha Srini-
vas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pre-
trained large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pages
20256–20264, 2024.

[Valmeekam et al., 2023] Karthik Valmeekam, Matthew
Marquez, Sarath Sreedharan, and Subbarao Kambham-
pati. On the planning abilities of large language models-a
critical investigation. Advances in Neural Information
Processing Systems, 36:75993–76005, 2023.

[Xie et al., 2023] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin
Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv
preprint arXiv:2302.05128, 2023.


	Introduction
	Approach
	Scene Semantization
	Goal Interpretation and Formulation
	 Planning
	Execution Layer

	Experiments
	The tasks
	Results
	Generative AI analysis
	Symbolic AI analysis


	Related Work
	Conclusions and Further Work
	Acknowledgments

