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Abstract
Successful music generation with AI techniques re-
quires musical consistency, referring to the repeti-
tion of identical or similar musical segments. Se-
quences generated with Machine Learning (ML)
models can imitate the dataset quite fruitfully but
have difficulty exhibiting long-term structure. Pre-
vious work combined constraint programming (CP)
with an ML model at inference time to provide
structure to the generated sequences. We explore
this work further by automatically injecting con-
straints closely related to the style of the corpus
on which the ML model was trained. We first
execute pattern detection on our dataset regarding
pitches, rhythms and intervals, and then identify
trends within the noted patterns that are used to
create musically meaningful constraints in the CP
models. Our goal is to produce music samples that
express the intended long-term structure while still
remaining faithful to the style of the corpus.

1 Introduction
Automatic music generation has been anticipated by scien-
tists since Charles Babbage elaborated the first designs for a
computer in 1843. The mathematician Ada Lovelace foresaw
that the Analytical Engine could transcend numerical calcu-
lations and, one day, be capable of composing music: “Sup-
posing, for instance, that the fundamental relations of pitched
sounds in the science of harmony and of musical composi-
tion were susceptible of such expression and adaptations, the
engine might compose elaborate and scientific pieces of mu-
sic of any degree of complexity or extent.” [Menabrea et al.,
1843] In recent years, research on applied artificial intelli-
gence (AI) techniques in the broad field of music has ex-
panded exponentially [Moysis et al., 2023]. One need only
consider the work of the Sony Computer Lab, projects such
as Google Magenta, MusicLM [Agostinelli et al., 2023] and
even more recent platforms such as Udio and SunoAI to grasp
the current avidity of AI researchers for musical composition.

This subject has been broached in many ways and with dif-
ferent types of algorithms such as Machine Learning (ML).
ML models have proven to be powerful tools to generate
musical content that can remain consistent with the dataset,

while still exhibiting creativity. For example, the Chord con-
ditioned Melody Transformer (CMT) [Choi et al., 2021] pro-
duces a melody based on a given chord progression with
promising results. However, ML models, including CMT,
often lack the ability to manifest long-term structure [Her-
remans et al., 2017; Briot et al., 2019; Lattner et al., 2018;
Lee et al., 2019]. Indeed, successful musical composition
hinges upon a display of musical consistency; that is, a gen-
eral sense of organization provided by long-term structure.
Several levels can be distinguished. An example of a more
fundamental level of structure is the repetition of identical or
similar musical segments, called patterns. Previous neuro-
symbolic work [Manibod, 2022; Manibod et al., 2025] ad-
dressed this challenge by imposing structure with constraint
programming (CP) within CMT during inference. However,
the author focused on successfully combining these tech-
niques rather than improving the musicality of the generated
melodies. We extend this work by using the same framework
but with constraints that bear greater musical significance.

1.1 Research Objectives
Our work focuses on adding long-term structure, specifically
repeated patterns at the rhythmic and pitch levels, imposed
through constraints, while preserving the style of the corpus.
We first perform pattern detection on a dataset of songs of a
particular style inspired by Briand [2018]. Then, we identify
the distinguishing characteristics of the style of the corpus
to create constraints that are more impactful from a musical
perspective. Finally, we aim to achieve a relevant long-term
structure in the generated melodies by incorporating these
constraints into CMT. Note that this work inherits certain re-
strictions from the CMT architecture such as monophony, a
fixed 8-bar length with time signature (4/4) and a minimum
subdivision of 1/16th note. Relaxing these constraints to sup-
port richer forms of music would require adopting a different
sequence model.

2 Background
2.1 Transformer
The Transformer model aims to capture long-range relation-
ships between tokens in a sequence. Its structure consists of
two main components: an encoder and a decoder. The en-
coder is made of a stack of layers, each one composed of two
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sub-layers: a multi-head self-attention mechanism and a fully
connected position-wise feed-forward neural network. The
decoder also comprises a stack of layers, each one including
a multi-head attention sub-layer in addition to the two sub-
layers contained in each encoder layer [Vaswani et al., 2017].

2.2 CP-Based Belief Propagation
Constraint Programming-Based Belief Propagation (CPBP)
[Pesant, 2019] transforms the way constraints are propagated,
providing a more precise estimation of the suitability of dif-
ferent values that a variable can take. Unlike standard sup-
port propagation, this method takes a more sophisticated ap-
proach by calculating the probability that each variable-value
pair adheres to a specific constraint. The propagation of
constraints becomes a process of continuous refinement of
knowledge akin to message passing. Indeed, these proba-
bilities are shared between constraints through the variables
they have in common allowing each constraint to adjust its
own probability estimates. This iterative message transmis-
sion process leads to the derivation of marginal probabili-
ties for each variable-value pair, which quantify the level of
constraint satisfaction associated with different value assign-
ments to variables.

2.3 Musical Theory
We briefly define a few key concepts. (See e.g. Benward and
Saker [2008; 2009].) Music consists of notes and rhythms.
Notes form chords, and organized into scales based on the
key. We focus on the C Major scale, which includes the seven
natural notes C,D,E, F,G,A,B. The smallest distance be-
tween two notes is a half-tone, and there are 12 half-tones
in an octave. An interval is the distance between two notes
and can be ascending or descending. Tonal harmonic analysis
identifies the key and chord structure of a piece.

3 Framework
3.1 Chord Conditioned Melody Transformer
The Chord Conditioned Melody Transformer (CMT) [Choi
et al., 2021] produces a melody based on a sequence of
chords. The generation of a melody unfolds in two steps. The
rhythm is first generated based on a given chord sequence,
then the pitch is produced using the results for the rhythms
from the first step. In other words, from a given chord pro-
gression c1:T = {c1, ..., cT }, CMT’s objective is to create
the rhythm sequence r1:T = {r1, ..., rT } and pitch sequence
p1:T = {p1, ..., pT }, where each sequence is composed of T
tokens and where T represents the total number of time steps.

The CMT’s architecture, shown in Fig. 1, consists of three
main components: the chord encoder (CE), the rhythm de-
coder (RD) and the pitch decoder (PD). CE uses a BLSTM
to encode the chords, instead of the self-attention mechanism
used in the Transformer’s encoder. For their part, RD and PD
incorporate a stack of N self-attention blocks and autoregres-
sively generate rhythm and pitch tokens, respectively. Output
of both decoders passes through an added output layer com-
posed of a fully-connected layer and a softmax layer in order
to obtain probability distributions over rhythm and pitch to-
kens. Rhythm tokens can take three possible values, onset,

Figure 1: Overview of original CMT architecture during token gen-
eration (gray rectangle) combined with CPBP. The CP models mod-
ify the probability distribution from which the next token is sampled
at each time step (adapted from [Manibod, 2022]).

hold and rest. Onset translates to playing a note and hold in-
dicates that the previous note is still being played. Possible
pitch tokens are 48 MIDI notes, hold, and rest. Hence, at a
particular time step, if the rhythm token is either hold or rest,
the corresponding pitch token must also have the same value.
The unit of a time step is a sixteenth note.

The generation phase creates the sequences autoregres-
sively, token by token. A probability distribution is calcu-
lated to represent the likelihood of all token values for the
subsequent step and the next token is thus sampled from this
distribution. In the case of the pitch sequence, the sampling
is restricted to consider only the top 5 most probable tokens.

3.2 CMT with CP-Based Belief Propagation
CMT with CP-Based Belief Propagation (CMT-CPBP) is a
neuro-symbolic framework that attempts to impose long-term
structure to the generated melodies with CMT by integrat-
ing CPBP at inference time [Manibod, 2022; Manibod et al.,
2025]. Fig. 1 illustrates the resulting architecture of CMT-
CPBP. There are two CP models, one for the notes and one
for the rhythms. As explained previously, at each time step of
the generation phase, the decoders’ softmax layer produces
a probability distribution from which the next token is sam-
pled. However, the probability distributions simply consider
the style of the dataset. The CP models with BP modify the
probability distribution from which the token is sampled to
take into account the satisfaction of constraints. We may add
that CP is not used to construct and execute a search tree to
find a feasible solution but rather only to restrict the token’s
domain. The sequence of tokens is represented in the CP
models as a sequence of variables whose domain corresponds
to the possible token values. The models receive as input the
previously generated tokens and the probability distribution
from CMT. They use the oracle constraint, expressed as:

oracle(xt, p)

where p is a fixed probability mass function over the domain
of variable xt. This is a unary constraint that does not im-
pose a relation between variables but rather contributes mes-
sages from CMT about the next token represented by xt dur-
ing BP. Subsequently, the token is sampled from the resulting
marginal probabilities. Thus, it is the oracle constraint that
permits the successful combination of CMT and CPBP since



it allows the models to respect both the style of the corpus
and the constraints.

3.3 Pattern Detection
We also draw inspiration from the pattern detection method
of Briand [2018], who decomposes melodies in sequences of
notes, rhythms and intervals. Suffix trees were then applied to
these sequences to detect patterns that were later used in the
melody generation system. Three levels of relevance of pat-
terns were also established by combining patterns from dif-
ferent sequences together.

3.4 Our Contribution
As the literature has highlighted, the lack of long-term struc-
ture is a central challenge in the field of automatic music gen-
eration. This work is primarily concerned with addressing
that problem. First, the note representation we use is for-
mulated relative to its musical context, drawing on concepts
from music theory. Inspired by Briand [2018], this work
focuses on identifying patterns across an entire corpus, as
in Shan and Chiu [2010], rather than within a single piece,
which contrasts with the approaches taken by [Briand, 2018;
Herremans and Chew, 2017; Conklin, 2021] and others. The
types of patterns considered include exact repetitions of note
sequences, rhythms, or intervals. Closed patterns, a concept
developed by Conklin [2021], or non-trivial, as used by Shan
and Chiu [2010], are also included, with an effort to further
explore these notions. We carry out pattern detection using
regular expressions, a method which, according to the litera-
ture review, has not yet been explored in the context of music.
Once the patterns are captured, the next step is to filter out
overlapping patterns, similar to what Shan and Chiu [2010]
did . Next, we perform a statistical analysis of identified
patterns, rather than focusing on the nature of any individual
one. Much like the MorpheuS system [Herremans and Chew,
2017], which used the COSIATEC algorithm to detect and
locate patterns [Meredith, 2013], we emphasize higher-level
characteristics of a piece’s patterns, such as their positions
and lengths. Finally, we use the information extracted from
this analysis to design patterns that are then turned into con-
straints. These constraints are incorporated into CMT-CPBP
to guide the generation of melodies. It is worth noting that
although the pattern-based constraints enforce certain long-
range repetitions, they govern only specific aspects of the
musical structure. The Transformer architecture ensures both
local and global musical consistency, and captures stylistic
dependencies beyond what constraints impose.

4 Music Generation with Long-Term
Structure

The overview of our approach is illustrated at Fig. 2. The
contribution of this paper is illustrated in the blue rectangle
while the work done by Manibod [2022] is presented in the
red rectangle. The author addressed the challenge that ML
models, such as CMT, face by imposing structure with CPBP
within CMT. The goal of this work is to create constraints that
hold greater musical significance and that are learned from

Figure 2: Method overview

Figure 3: Note (red), rhythm (green), interval (blue) patterns

the dataset. The first step consists in performing pattern de-
tection on a dataset of songs of a particular style. The second
step is to execute a trends analysis on the collected patterns in
order to identify the characteristics that distinguish the style
of the corpus. These characteristics are then used to create
constraints.

4.1 Data Representation
The choice of data representation is critical, as it directly
influences the patterns detected. A common approach assigns
each note a fixed value (e.g., MIDI or semitone 1–12), but
this fails to capture modulated patterns. For instance, the
pattern {C, G, E, C} in C Major, later transposed to F Major
as {F, C, A, F}, would not be matched. To address this,
we perform tonal harmonic analysis to identify chords and
normalize notes relative to key. In both cases, the pattern
becomes {1, 5, 3, 1}, enabling its detection. Rhythms
are encoded as r (played) or s (rest), followed by a float
indicating duration (e.g., r1.0 for a quarter note). Intervals
are calculated as the difference between consecutive notes:
positive for ascending and negative for descending. Consider
the example melody in Fig. 3. In C Major, the notes are
represented as {1, 1, 2, 3, 3, 2, 3, 3, 4, 5, 3, 1}, rhythms as
{r1.0, r1.0, r0.5, r0.5, r0.5, r0.5, r1.0, r1.0, r0.5, r0.5, r0.5,
r0.5}, and intervals as {0, 1, 1, 0,−1, 1, 0, 1, 1,−2,−2}.

4.2 Pattern Detection
In order to detect relevant patterns within the dataset, we first
proceed by capturing all patterns and then continue by filter-
ing them to keep only the relevant ones.

Pattern Capture
The lists of notes, rhythms and intervals are first converted
into strings where each element is separated by a comma.
The requirements our regular expression must meet are de-
scribed in Table 1 along with the expression that conveys each
of them. After combining the equivalent regex for each re-
quirement, we obtain the following final expression:

(?=((?P<pattern>([ˆ,]+\,){3,})

(([ˆ,]+\,)+)?(?P=pattern))) (1)



Requirement Regular Expression
1. An element may consist of one or more characters. +
2. A pattern needs to be repeated twice or more. (?P<pattern>=...)(?P=pattern)
3. A pattern has to contain three elements or more. 3,
4. Each element is separated by a comma. \,
5. An element can be any character but a comma. [ˆ,]+
6. Patterns may be separated by a # of other elements. (([ˆ,]+\,)+)?
7. An element can be included in more than one pattern. (?=...)

Table 1: Requirements for pattern capture with corresponding regex

Pattern Filtering
The second step of pattern detection is to exclude all patterns
that are Pareto-dominated by other patterns. After this filter-
ing step, we use the function finditer to identify all the
occurrences of the remaining patterns. Formally, a pattern x
is said to overlap with other patterns of P if it satisfies the
condition C(x, P ) where o(x) denotes the number of occur-
rences of x. This relationship is defined as follows:

C(x, P ) ⇔∃ p ∈ P | x ⊂ p ∧ o(x) = o(p)

∨ ∀ y ⊂ x,C(y, P \ x) (2)

The first clause of relation 2 states that a pattern is considered
an overlapping sub-pattern if all of its occurrences are en-
tirely contained within another, longer pattern. For example,
in the note sequence {G,A,B,G,A,B}, the patterns {G,A}
or {A,B} are not retained because they are already included
in {G,A,B} and occur just as many times. Moreover, the
second clause of relation 2 reflects a deliberate choice for
a stricter notion of redundancy. It states that a pattern may
also be considered overlapping within the set P when all of
its sub-patterns are themselves overlapping with other pat-
terns in P . For instance, as illustrated in Fig. 4, in the
sequence {C,D,E, F,C,D,E, F,C,D,E, F,C,D,E, F},
the pattern x = {C,D,E, F,C,D,E, F} is overlapping be-
cause it contains the sub-pattern y = {C,D,E, F}, which,
according to the first part of relation 2, is already overlapping
in P \ x, given that the pattern exists independently.

Figure 4: Second clause of relation 2: dotted pattern is removed.

Fig. 3 illustrates examples of note, rhythm, and interval
patterns in a melody, detected using regular expression 1 after
filtering. The note pattern is {2, 3, 3}, the rhythm pattern is
{r1.0, r1.0, r0.5, r0.5, r0.5, r0.5} and the interval pattern is
{0, 1, 1}. Each pattern occurs twice.

4.3 Trend Analysis
Based on the patterns extracted from a set of pieces, the next
phase involves gathering information to identify the trends
that characterize the style of the data.

Pattern Occurrences
The first type of analysis we perform on the patterns is por-
trayed in Fig. 7. These heatmaps represent the relative rate of
patterns found according to the progression of a piece’s tem-
poral progression and the pattern length, for note, rhythm,
and interval patterns. The horizontal axis is divided into 16

Figure 5: Note pattern occurrences (red) distributed across sections

slices of 6.25%, indicating the time at which the pattern oc-
curs within the melodic progression. The vertical axis is also
divided into 6.25% increments, up to 50%, and represents the
pattern length. The color indicates the trend of a section x to
contain patterns of length y. The closer the color is to yellow,
the higher the number of patterns. The heatmap can be inter-
preted as follows: in section x, there is a (x, y)% probability
of finding a pattern of length y.

Thus, this type of heatmap answers the following question:
what is the likely length of a pattern that begins in section x?

Construction of the Occurrence Matrix
For each pattern occurrence, we compute the pattern’s length
and its position in terms of sections. The value of each matrix
element is incremented by the proportion of the section that is
covered by the occurrence. The matrix is then normalized by
dividing each value by the sum of its column. In this matrix, it
is the starting position of the pattern that matters, rather than
the entire span of its occurrence, because the goal of the re-
sulting heatmap is to determine the length (y) of a pattern that
begins in section x. Moreover, the occurrence rate of a pattern
of length y in section x must faithfully reflect the importance
of that pattern within section x. For this reason, each element
of the matrix is incremented proportionally to the coverage
of the pattern. Although the heatmap of occurrences provides
valuable information, it does not establish a link between the
locations of the pattern occurrences. This motivates the need
for a second type of analysis.

Pattern Correlation
The second type of analysis conducted on the patterns is il-
lustrated in Fig. 9, and concerns the correlation between dif-
ferent sections of the melody across all pieces in the corpus.
Both the horizontal and vertical axes represent 16 segments,
each corresponding to 6.25% of a typical piece in the cor-
pus. The colors indicate the degree of similarity between two
sections. These heatmaps can thus be interpreted as follows:
patterns occurring at x% of a piece have a (x, y)% tendency
to resemble patterns at y% of the same piece. The relevance
of this correlation analysis lies in its ability to reveal where
patterns are likely to emerge across the dataset. This infor-
mation is essential for applying patterns in a meaningful and
strategic way when defining constraints in the next stage.

Construction of the Correlation Matrix
Each matrix entry correlation[a][b] represents the degree of
correlation between sections a and b, based on shared pattern
occurrences. For each occurrence, we compute its relative
coverage within the sections it spans. For example, if a note
pattern covers half of section 2 and a full beat in section 3, it
contributes 0.25 and 0.5 respectively (see Fig. 5).

The matrix is populated by summing the product of these
proportions across all pattern pairs. Each column is then nor-
malized so that it sums to 1, yielding an asymmetric matrix



where column x reflects the influence of all other sections y
on section x. The diagonal values quantify self-correlation
and are nonzero when a pattern overlaps a section boundary.

Unlike the occurrence matrix in Section 4.3, which only
considers pattern start points, this matrix captures patterns’
full spans. Ignoring continuation would misrepresent impor-
tance, as in Fig. 5, where much of a pattern lies in section
3, despite beginning in section 2. Accurate correlation thus
requires proportional attribution across all affected sections.

4.4 Constraint Creation
We now turn to the central question: how can the information
extracted from the heatmaps in the previous section be trans-
formed into constraints? The process begins by sampling pat-
terns, which involves selecting the most relevant pairs of sec-
tions from the correlation graph and associating them with
the most frequent pattern lengths from the occurrence graph.
Constraints are then derived from these sampled patterns.

Pattern Sampling
First, the correlation graph provides insight into the degree of
similarity between different sections. Pairs of section indices
(i, j) are randomly selected from the data in this graph. How-
ever, not all section pairs are equally relevant. For this reason,
only those above a certain threshold are retained, ensuring
that the selected pairs meet a minimum level of relevance.
This threshold is defined during experimentation (see Section
6.1). Next, the occurrence graph provides information about
the most frequent pattern lengths. The length L of each se-
lected section pair is sampled proportionally to the frequency
of occurrence values in column i of the occurrence graph.
The combination of a section pair and a sampled length con-
stitutes a pattern. Fig. 6 shows a simplified example of how a
pattern is applied to a melody as a constraint: it occurs twice
at positions 25% and 75% with a length of 25%.

Pattern selection follows the rule that only a limited pro-
portion of the composition can be constrained by patterns of
a specific type (notes, rhythms, or intervals), to avoid over-
constraining the piece. This proportion is also defined during
experimentation (see Section 6.1). In the case of an 8-bar
composition in 4/4 time, such as those generated by CMT-
CPBP, each 6.25% section corresponds to 2 beats. Thus, if
the allowed proportion is 50%, constraints can be applied to
up to 8 sections, or 4 bars, for each pattern type. Patterns
are randomly selected from the pool of eligible candidates
we produced. For each selected pattern, the total number of
constrained sections is updated by summing the lengths of all
selected patterns and doubling that sum (since each pattern
spans two sections). New patterns continue to be selected un-
til the maximum allowable number of constrained sections is
reached.

Modeling Patterns as Constraints
The sampled patterns are modeled as constraints within a CP
framework adapted from Manibod [2022], which incorpo-
rates the oracle constraint to reshape the probability distri-
bution used by CMT when sampling the next token. All addi-
tional constraints described below are original contributions
of this work. In both CP models, a vector of 128 variables
x = {x1, . . . , x128} represents the melody to be generated.

Figure 6: Pattern applied to melody as an equal constraint

The rhythm model defines CSPrhythm(X ∪ o,D,C),
where D(xi) = {0, 1, 2}. Constraints include equal(xi+k,
xj+k) for all 0 ≤ k < L, over section pairs (S1, S2) of length
L (see Fig. 6). To ensure equal numbers of onset tokens
in both sections, necessary for note and interval constraints,
among constraints are added:

among(S1, onset, o) (3)
among(S2, onset, o) (4)

The oracle constraint is applied at each time step t:
oracle(xt, p) (5)

where p is the marginal distribution over D(xt).
The note model defines CSPnotes(X ∪Xc, D,C), where

D(xi) = {0, . . . , 49}. A converted variable set Xc represents
notes relative to the current chord (see Section 4.1). The link
between X and Xc is enforced via:

element(conversion[i], xi, xc,i) (6)
Equality constraints are applied over each section pair:

equal(xc,i+k, xc,j+k) ∀ 0 ≤ k < L (7)
To enforce octave consistency, we constrain pitch differences
in X to be within one octave:

lessOrEqual((xi+k − xj+k), 11) (8)
largerOrEqual((xi+k − xj+k),−11) (9)

Interval constraints require matching relative intervals be-
tween adjacent notes:
equal((xc,i+k − xc,i−1+k), (xc,j+k − xc,j−1+k)) (10)

To ensure octave consistency, we reuse the pitch constraints
8-9 and additionally apply them to the preceding notes in the
interval:

lessOrEqual((x(i−1)+k − x(j−1)+k), 11) (11)

largerOrEqual((x(i−1)+k − x(j−1)+k),−11) (12)
The oracle constraint is also applied on each note token:

oracle(xt, p) (13)

5 Experiments
5.1 Experimental Configuration
The model was trained on a corpus of 457 Irish reels from
the Nottingham Dataset1, selected for its compatibility with
CMT’s architecture (binary meter, 4/4). Preprocessing fol-
lowed the procedure in Choi et al. [2021], including data aug-
mentation by key transposition and segmentation into 8-bar
excerpts (128 time steps). CMT was trained using negative
log-likelihood for the rhythm decoder (RD) and focal loss for
the pitch decoder (PD), with hyperparameters matching the
original implementation2. The dataset was split 80/10/10 for
training, validation, and testing.

1https://github.com/jukedeck/nottingham-dataset
2https://github.com/ckycky3/CMT-pytorch

https://github.com/jukedeck/nottingham-dataset
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5.2 Data Preprocessing for Pattern Detection
Following Briand [2018], we converted and preprocessed
MIDI files to extract note onsets, durations, and chord in-
formation. We reconstructed chords via harmonic analysis
so notes could be represented by scale degree relative to the
current chord. We computed relative intervals as differences
between consecutive notes, and inferred rhythmic values by
correcting for MIDI-inserted silences. Since note durations
are not proportional to musical time, we expressed pattern
positions in absolute time rather than note indices. We then
applied pattern detection (Section 4.2) to the processed data.

5.3 Trends
Pattern Occurrences
Fig. 7 shows that 25%-length patterns dominate across all
types, especially for notes and intervals. Shorter patterns
(6.25%) are also frequent, which is expected as they often
recur within longer patterns (see Fig. 8). Moreover, an end-
ing diagonal reflects the last possible occurrence for patterns
of a given length near the piece’s end.

Pattern Correlation
The heatmaps in Fig. 9 reveal strong repetition within the
quarters of the first and last halves of pieces, especially for
notes and intervals. For instance, patterns at 0% often reap-
pear at 25% and 40%. In contrast, rhythmic patterns are more
evenly spread. The square (notes) and rectangular (rhythm
and interval) clusters suggest consistent but asymmetric rep-
etition, i.e. 25%-length rhythm and interval patterns are more
likely to diverge near the end of their spans.

Comparison with Another Musical Style
To validate the trend analysis, we applied it to a second cor-
pus, the hornpipes, drawn from the same repository. Fig. 10
illustrates that hornpipes display distinct trends compared to
reels: they favour longer patterns (50%) across all types,
whereas reels lean toward 25%. Correlation heatmaps in
Fig. 11 also show that hornpipes repeat 50% segments more

(a) Note patterns (b) Rhythm patterns

(c) Interval patterns

Figure 7: Pattern occurrences according to piece progression and
pattern length in the reels corpus

Figure 8: Short note pattern (dotted) repeated within long (solid)

(a) Note patterns (b) Rhythm patterns (c) Interval patterns

Figure 9: Correlation of pattern occurrences across sections within
a piece in the reels corpus

frequently and symmetrically, especially for notes and inter-
vals. Nonetheless, some similarities persist. Both styles show
light repetition of 25% segments, and rhythmic patterns tend
to be evenly distributed, centered at 25% in reels and 50% in
hornpipes. This may reflect a general structural trait of Irish
folk music.

5.4 Constraints
We implemented the constraints in the MiniCPBP solver3

[Pesant, 2019]. The CP models were integrated into CMT-
CPBP architecture4. Belief propagation is run using the
vanillaBP function from MiniCPBP, with 5 iterations.
In the occasional event the constraints become unsatisfiable,
generation is aborted, and then restarted.

3https://github.com/PesantGilles/MiniCPBP
4https://github.com/Manibod/CMT CPBP

(a) Note patterns (b) Rhythm patterns

(c) Interval patterns

Figure 10: Pattern occurrences according to piece progression and
pattern length in the hornpipes corpus

https://github.com/PesantGilles/MiniCPBP
https://github.com/Manibod/CMT_CPBP


(a) Note patterns (b) Rhythm patterns (c) Interval patterns

Figure 11: Correlation between pattern occurrences across sections
within a piece in the hornpipes corpus

6 Evaluation
6.1 Experiment Configuration
Pattern construction and selection are governed by two pa-
rameters: (1) the section selection threshold, which controls
pattern relevance, and (2) the desired coverage, which deter-
mines how many patterns to include (see Section 4.4). Three
experiments are conducted by varying the threshold (95%,
80%, 0%) while keeping coverage fixed at 100%. These
thresholds correspond to selecting sections from the top 5%,
top 20%, or with no filtering, respectively. In each case, pat-
tern selection continues until the target coverage is reached.
Furthermore, for each experiment, we generate forty musical
samples, and we select the top five to form three survey sets.
In the first experiment, we use only note and interval patterns;
rhythm is handled solely by CMT. This setup proves advan-
tageous: as shown in the trend analysis, rhythmic patterns in
reels are uniformly distributed. This suggests that (1) CMT
alone can adequately model rhythmic structure, and (2) ad-
ditional rhythmic constraints are unnecessary, as no distinc-
tive rhythmic features dominate. Samples from this experi-
ment are available for listening here. We generated the sam-
ples from the second experiment using patterns selected with
greater flexibility, but still drawn from the most significant re-
gions of the graphs. The selected patterns therefore include
note, rhythm, and interval patterns. As for the third experi-
ment, the patterns are selected randomly in order to observe
the impact of the threshold used to choose sections.

6.2 Subjective Evaluation of Results
We conducted a subjective evaluation with 37 participants
via an online survey consisting of 15 identical questions, 5
per experiment. In each question, participants compared two
excerpts: one generated by CMT alone, and the other by
CMT-CPBP with patterns. The order of excerpts was ran-
domized, and both used the same chord progression. Par-
ticipants could listen as many times as they wished. Survey
results are shown in Figures 12a and 12b, which respectively
display vote percentages per experiment and vote counts per
question. As shown in Fig. 12a, excerpts generated by CMT-
CPBP with patterns outperformed CMT alone in the first ex-
periment (95% threshold), receiving 60.5% of the votes. This
preference declined as the threshold decreased: 50.8% in the
second experiment (80% threshold), and just 25.4% in the
third (0% threshold), where 74.6% of votes favored CMT
alone.

(a) Mean participant preference
by model across experiments

(b) Participant vote distribution
by question and model

Figure 12: Results of subjective evaluation

6.3 Statistical Testing of Results
We assessed significance using one-tailed Z-tests (n = 37).
CMT-CPBP was significantly preferred in experiments 1 and
2, while CMT was favored in experiment 3. We compared
against critical values Zc = 2.58 (99% confidence) and Zc =
2.06 (98% confidence). For example, CMT-CPBP was sig-
nificantly preferred in Questions 3, 4, and 6 with Z = 4.74,
4.74, and 2.78 respectively (99%), and also in Questions 9
and 10 at 98%. Conversely, CMT was significantly preferred
in Questions 5, 7, 8, 11, 12, 14, and 15 (with Z reaching
−4.76), confirming that stylistically-guided constraints can
produce statistically meaningful shifts in listener preference.

6.4 Observations
The results show that our approach using stylistically-
informed constraints improves the musical quality of gen-
erated musical excerpts. The higher the threshold, the bet-
ter CMT-CPBP with patterns performs, often producing ex-
cerpts that outperform CMT alone. Conversely, Experiment
3 (threshold of 0%) reveals that imposing constraints without
taking into account the characteristics of the dataset intro-
duces arbitrary structure that interferes with CMT’s learned
musicality, and leads to less natural-sounding outputs.

7 Conclusion
This work addressed the challenge of long-term structure
in AI-generated music, specifically, the recurrence of musi-
cal segments. Building on prior work integrating CP with
CMT [Manibod, 2022; Manibod et al., 2025], we enhance the
CMT-CPBP model by introducing style-specific constraints
derived from the training corpus. Our results show that
pattern-based constraints significantly improve musical qual-
ity, and that higher pattern relevance leads to stronger listener
preference for CMT-CPBP over the baseline.

Because the chord progression used by CMT is fixed and
sampled randomly from the dataset, preventing any control
over musical closure. As a result, generated excerpts often
end unresolved. Enabling control over chord progressions
and analyzing their internal patterns, would be a valuable ex-
tension. Another direction of future work is to account for
meaningful pattern variations—i.e., perceptually similar se-
quences with melodic embellishments—by adapting the pat-
tern detection method and allowing partial equality in con-
straints.

https://drive.google.com/drive/folders/1CfcHywfJ6wm-1GL1aEO9TcppDa67QW8F?usp=sharing
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