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Abstract
Neurosymbolic architectures hybridize discrete
reasoning with neural networks to solve discrete
optimization problems from natural inputs. One
key challenge for such architectures is the symbol
grounding problem, i.e., learning how to map vi-
sual inputs to discrete variables without explicit su-
pervision. We extend a previously-proposed neu-
rosymbolic architecture, that uses discrete graphi-
cal models for reasoning, to tackle symbol ground-
ing. This architecture is trained efficiently using the
E-NPLL, a probabilistic loss that requires to ob-
serve a complete assignment of the variables. We
propose a new approach based on imputation of
unobserved variables to enable the use of the E-
NPLL for the symbol grounding problem. Exper-
imentally, we first show the efficiency, both in time
and data, and interpretability of the E-NPLL on the
task on learning the rules of Sudoku from solution
examples. We then assess our imputation strategy
on the standard Visual Sudoku benchmark.

1 Introduction
In recent years, several neurosymbolic architectures have
been proposed to integrate discrete reasoning or optimization
within neural networks. The main motivation is the ability to
process natural inputs while simultaneously exhibiting exten-
sive logical reasoning capabilities. This is a promising direc-
tion towards Artificial General Intelligence (AGI).

One of the pioneer neurosymbolic architectures, SAT-
Net [Wang et al., 2019], illustrated those capacities on the Vi-
sual Sudoku task, where the architecture must simultaneously
learn how to solve Sudoku puzzles and how to recognize
the hand-written digits providing initial hints (see Figure 1).
If the original paper reported convincing performance, later
work [Chang et al., 2020] showed the architecture ‘cheated’
by using direct supervision to learn the mapping from the vi-
sual inputs to symbolic numbers. Without this direct super-
vision, performances collapsed. Indeed, learning this map-
ping – the symbol grounding task – is a much more challeng-
ing task and subsequent works improving SATNet for symbol
grounding required heavy machinery, such as a large neural
net for unsupervised clustering [Topan et al., 2021].

In this paper, we aim for a light-weight and efficient ar-
chitecture for symbol grounding. We build upon a previ-
ously proposed architecture learning discrete graphical mod-
els from examples of solutions [Defresne et al., 2023]. For
instance, it is able to learn the rules of Sudoku, from a set
of filled grids. We chose this approach because it is data-
efficient, has low-training time and has been proved efficient
on both benchmark and real-life problems. This architecture
is trained using the Emmental-NPLL (E-NPLL), a probabilis-
tic loss that requires to observe all the variables of the target
solution. In the case of symbol grounding, some variables are
unobserved to prevent cheating from direct supervision.

To extend the E-NPLL for symbol grounding, we propose a
new approach using data imputation to infer the missing vari-
ables and obtain a complete assignment. Then, the generic
method based on the E-NPLL [Defresne et al., 2023] can be
applied. We first experimentally evaluate the data-efficiency
and parameter-efficiency of the hybrid architecture trained
under the E-NPLL on the standard Sudoku benchmark (fur-
ther than done in [Defresne et al., 2023]). We also show the
interpretability of the approach by retrieving the learned logi-
cal constraints to show the exact rules have been learned. We
then demonstrate on the Visual Sudoku benchmark that data
imputation enables the hybrid architecture to solve the associ-
ated symbol grounding problem. Our approach is competitive
with state-of-the-art approaches while being 32% faster.

2 Related work
In the wake of the seminal work of SATNet [Wang et al.,
2019], proven to fail at symbol grounding [Chang et al.,
2020] and improved accordingly [Topan et al., 2021], several
directions were explored for symbol grounding: constraint
satisfaction problems with a recurrent Transformer [Yang
et al., 2023], grounding with Satisfiability Modulo The-
ory [Wang et al., 2023], casting symbol grounding as a game
with two optimization problems (neural and symbolic learn-
ing) [Li et al., 2023a] or inspired by policy from Reinforce-
ment Learning [Daniele et al., 2023]. Except for the last one,
they all used Visual Sudoku as a benchmark.

3 Background
Notations. We denote sequences, vectors, and tensors in
bold. Variables are denoted in capitals with a given vari-
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Figure 1: Left: a visual Sudoku grid. Right: the cost function stating
that variables i and j must be different. The complete CFN repre-
senting Sudoku rules has one such cost function for each pair of
variables on the same row, column or sub-square .

able Yi ∈ X being the ith variable in the sequence X. An
assignment of the variables in X is denoted y and yi is the
assignment of Yi in y.

For reasoning, we use discrete graphical models (GM).
They concisely describe a complex function of many vari-
ables as the combination of many simple functions with few
variables. GMs cover a large spectrum of NP-hard reasoning
and optimization frameworks including Constraint Networks
and Propositional Logic [Cooper et al., 2020]. Here we use
Cost Function Networks (CFN) for their ability to express
both numerical functions (such as probability over digits) and
logical ones (e.g., rules of Sudoku).

Definition 1. Given a sequence X = {Y1, . . . , Yn} of n finite
domain variables, a cost function network M is defined as a
set of elementary cost functions. It defines a joint cost func-
tion, also denoted M(·) =

∑
F∈M F , involving all variables

in X. The optimization problem, known as the Weighted Con-
straint Satisfaction Problem (WCSP), is to find an assignment
y that minimizes the joint function M(y). If M(y) < ∞, y
is called a solution.

CFNs are equivalent to Markov Random Fields (MRFs)
through exponentiation of the joint cost function to define
a joint probability distribution : PM ∝ exp(−M(·)) =∏

F∈M exp(−F ). Intuitively, a high cost corresponds to a
low probability.

Figure 1 illustrates one cost function representing the rules
of Sudoku with CFN. The rule between each pair of cell is
represented by a cost matrix of shape 9 × 9 (the size of the
domains). All pairs of cells on the same row, column or 3
sub-square must be different, which is represented by a soft
difference-like cost function (a matrix with a strictly positive
diagonal and zeros) that prevents the use of the same value
for the two variables. Other cost matrices are 0, indicating
the absence of a pairwise constraint.

4 Method
4.1 Dataset and loss
We assume that we observe a dataset S of samples (ω,y)
where ω is a natural input that can be described by a con-
strained optimization problem and y is one low-cost solution
of this problem. In the example of Visual Sudoku, ω is the

input grid with hand-written hints and y is the solution of the
grid. From S we aim to train a neural network N to predict a
pairwise CFN M = N(ω) of which y is a low-cost solution,
i.e., y ∈ argminy∈DX N(ω)(y). At inference, a solution for
a new input ω is proposed by predicting the CFN representing
ω and solving it with a discrete solver [Hurley et al., 2016].

The neural network N can be trained using the Emmental-
NPLL (E-NPLL) [Defresne et al., 2023], that relies on the
probabilistic interpretation of a CFN.
Definition 2. Given a GM M over variables X and H ⊂ X,
we denote by M − H the graphical model derived from M
by replacing all cost functions involving a variable in H by a
constant 0 function. The E-NPLL can then be defined as

E-NPLL(y) = −
∑
Yi∈X

log(P (N(ω)−Hi)(yi|y−i))

where Hi is a random subset of {1, . . . , n} \ {i} and y−i is
the sequence of variables y after removal of variable yi.

To make the predicted optimization problem N(ω) easier
to solve, we add to the E-NPLL loss a L1 regularization on
N(ω) to encourage the GM to be sparse. Note the regular-
ization is on the output of the neural network and not on its
weights. The complete training loss is then:

L(y) = E-NPLL(y) + ||N(ω)||1

4.2 Data imputation for symbol grounding
Symbol grounding consists in learning a mapping from vi-
sual inputs to symbols without explicit supervision. On neu-
rosymbolic problems with a perception task and a reasoning
task, solving the grounding problem is much more challeng-
ing than solving each task separately [Chang et al., 2020].
To prevent any data leakage that would provide a direct su-
pervision signal, the symbols corresponding to the visual in-
puts must be masked [Chang et al., 2020], leading to samples
(ω,y) with partial assignment y. In the example of the Vi-
sual Sudoku benchmark, each image of a digit in the grid is
known to represent the value of a single variable. To prevent
direct supervision for digit recognition, and enforce simulta-
neous learning with Sudoku rules, initial hints are masked in
the sequence y, leading to unobserved variables.

The E-NPLL is defined only over complete assignments.
To apply it for solving symbol grounding problems, the ob-
served partial assignment y should be completed through data
imputation. A usual strategy to deal with missing data is to
rely on variants of the expectation-maximization (EM) algo-
rithm [Qu et al., 2019]. However, it is intractable in our case
since it requires computing expensive marginals (#-P hard).

Instead, we define a simpler imputation procedure based
on the GM solver. The values of the missing variables in
y are obtained by solving the predicted CFN N(ω) with all
variables observed in y being assigned to their values. The re-
sulting complete assignment is then used instead of the partial
y to compute the E-NPLL loss. During training, this impu-
tation strategy requires one solver call (NP-hard) per sample
with missing data. When the fraction of unobserved variables
remains limited, the solved problems are simple, with just a
few unassigned variables. In our experiments, we use an ex-
act GM solver for imputation [Hurley et al., 2016].



Type Approach Acc. #hints Train set Param. Train time (h)

DL RRN [Palm et al., 2018] 96.6% 17 180,000 200k > 100
Rec. Trans. [Yang et al., 2023] 76.2–78.2% 17 180,000 211k 1.8
DDPM [Ye et al., 2025] 99.2–100% 33.8 100,000 6M 13.6
DDPM 0.2% 17 - - -

Relax+DL SATNet [Wang et al., 2019] 95.1–99.8% 36.2 9,000 600k 2.9
SATNet 86.1–86.2% 17 - - -

CO [Bessiere et al., 2023] 100% - 200 - 0.01

CO + ML [Brouard et al., 2020] 100% 17 9,000 - 1.5

CO+DL Hinge [Defresne et al., 2023] 100% 17 1,000 180k >50
E-NPLL [Defresne et al., 2023] 100% 17 200 180k 0.25
E-NPLL (here) 100% 17 100 22k 0.05

Table 1: Accuracies of related works. They are sorted by type of approach: pure Deep Learning (DL), reasoning (CO for combinatorial
optimization), and relaxation of reasoning (Relax), which can be combined with ML or DL. The ’# hints’ gives the average hardness of the
test set. Param. is the number of parameters of the neural network.

5 Experiments
Reported training times have been measured using a Nvidia
RTX-2070 Super GPU with 8GB of VRAM and a 4.2 GHz
AMD Ryzen 9 5900X CPU with 32 GB of RAM. During
our measures, we noticed that the reported training accuracies
were often slightly below those in the original papers. We
therefore reran them to collect 3 results (including the paper
result) and we report the min/max accuracies observed. The
only exception is RNN because of its training time. Our code
is run with PyTorch 2.6 and PyToulbar2 0.0.0.4. We use the
Adam optimizer with a weight decay of 10−4 and a learning
rate of 10−3 (other parameters take default values). An L1
regularization with multiplier 2.10−4 is applied on the cost
matrices N(ω)[i, j]. Code and data will be made available.

5.1 Efficiency on the Sudoku task
We first motivate the use of the E-NPLL by demonstrating
its efficiency, both in terms of training time and data, on the
NP-complete Sudoku problem. It is a classical logical rea-
soning problem that has been repeatedly used as a bench-
mark in a “learning to reason” context [Palm et al., 2018;
Wang et al., 2019; Brouard et al., 2020; Defresne et al., 2023;
Yang et al., 2023; Li et al., 2023a; Bessiere et al., 2023;
Ye et al., 2025]. The task is to learn how to solve new Su-
doku grids from a set of solved grids, without knowing the
game rules. The E-NPLL has already been proven to be effi-
cient in this task [Defresne et al., 2023], both in terms of time
and data. Here, we make the architecture even more efficient
and compare it to the most recent approaches.

Task. Given samples (ωℓ,yℓ) of initial and solved Sudoku
grids, we want to learn how to solve new grids. Sudoku play-
ers know that Sudoku grids can be more or less challenging.
As one could expect, it is also harder to train how to solve
hard grids than easy grids [Brouard et al., 2020]. We use
the number of initially filled cells (hints) as a proxy for the
problem’s hardness, a grid with few hints being hard. The
minimal number of hints required to define a single solution
is 17, defining the hardest single-solution Sudoku grids. We

use the RRN data set [Palm et al., 2018], composed of single-
solution grids with 17 to 34 hints. We train and validate on
all-hardness grids. As in [Palm et al., 2018], we test on the
hardest 17-hints instances, 1, 000 in total.

Neural architecture. A 9×9 Sudoku grid is represented as
81 cell coordinates, possibly with a hint. Each cell is repre-
sented by a variable with domain {1, . . . , 9}. For N , we reuse
the same architecture [Defresne et al., 2023], but we drasti-
cally reduce the number of parameters. We use a Multi-Layer
Perceptron (MLP) with 4 hidden layers of 64 neurons and
residual connections [He et al., 2016] every 2 layers. It results
in 9 times fewer parameters. The neural net receives the pairs
of coordinates of pairs of cells (Yi, Yj) and predicts all pair-
wise cost matrices N(ω)[i, j]. Hints are used to set the values
of their corresponding variable in N(ω). Performances are
measured by the percentage of correctly filled grids; no par-
tial credit is given for individual digits.

Test. In Table 1, we compare our results with related ap-
proaches that learn how to solve Sudoku. Pure Deep Learning
methods, Recurrent Relational Network (RRN) [Palm et al.,
2018], Recurrent Transformer [Yang et al., 2023], and De-
noising Diffusion Probabilistic Models (DDPMs) [Ye et al.,
2025], require orders of magnitude more data and fail to solve
some of the hardest puzzles. DDPMs [Ye et al., 2025] solve
simple Sudokus (from a Kaggle dataset) quite reliably, but
completely fail on hard Sudokus. Adding a convex relaxation
of Max-SAT reasoning optimization layer, SATNet [Wang et
al., 2019] becomes much more data-efficient. Still, it fails to
solve all easy grids, and its accuracy drops significantly on
hard grids, below that of pure DL approaches.

Reasoning alone [Bessiere et al., 2023], or combined with
ML [Brouard et al., 2020], learns the proper rules, solves all
test instances reliably, and offers far more efficient training
than DL-based approaches. However, these non-end-to-end
differentiable approaches cannot directly exploit natural in-
puts, as in the Visual Sudoku or protein design tasks described
below. Finally, hybrid approaches combine both DL and ex-
act reasoning. A follow-up work [Li et al., 2023b] of SATNet,



Approach MNIST accuracy Percep. Solved Training (h)

Rec. Trans [Yang et al., 2023] 99.4% 74.8% 75.6% 5.1
NeSy. Prog. [Li et al., 2023a] 99.6–99.7% 90.7–93.1% 92.2–94.4% 4.7

E-PLL (here) 98.7–98.8% 69.3–72.9% 92.1–93.4% 3.2

Table 2: Grounded Visual Sudoku performance (balanced RNN test set). Percep. refers to the percentage of grids correctly filled without
modifying the recognized digits, while Solved is the percentage of correct grids after correction of misclassified digits. The minimum and
maximum values observed of 3 runs are indicated (when they differ).

extracts explicit logical rules from SATNet, enabling reliable
solving on 4 × 4 grids. On 9 × 9 grids, it learns hundreds
of thousands of clauses, leading to unsolvable instances. Ap-
proaches that embed an exact solver during training, as the
structured Perceptron/Hinge losses, solve any grids [Defresne
et al., 2023], but at the cost of an excruciatingly long training
time. Overall, the E-NPLL stands out for its perfect reliabil-
ity, its data-efficiency, and its low training time. Compared
to the first-proposed architecture [Defresne et al., 2023], ours
offers a five-time reduced training time, training in less than 3
minutes on a single CPU, and requires only half of the train-
ing grids (100 in total).

Retrieving exact constraints After learning, logical con-
straints can be retrieved with two alternative strategies. When
constraints only need to be learned, a threshold can be ap-
plied : learnt costs below the threshold are set to 0 and costs
above are set to ∞ (hard constraint). The second strategy is
cost function hardening [Brouard et al., 2020], which has the
advantage of requiring no parameter and also of preserving
the learned criterion (if needed). Non-zero learned costs are
considered in decreasing order and set to ∞ if the correspond-
ing value combination is not observed in any of the training
set. This is repeated until a contradiction is found. When ap-
plying cost function hardening to the output of the neural net-
work trained for the Sudoku task, all of the 810 pairwise con-
straints are predicted, with no additional constraints. There-
fore, the exact rules are learnt and we can be confident that
the test accuracy of 100% extends to any Sudoku instance.

5.2 Visual Sudoku Grounding
Task. In the Visual Sudoku problem, hints are images of
hand-written digits. The goal is to simultaneously learn how
to recognize digits and how to play Sudoku. Our data set
is obtained from the symbolic Sudoku data set by replacing
hints with arbitrarily selected MNIST images, as in [Brouard
et al., 2020; Topan et al., 2021]. We use grids from the
RRN dataset (9, 000 for training, 64 for validation), as they
are much more challenging than the SATNet dataset (aver-
age 36.2 hints) [Wang et al., 2019]. The test set contains 100
grids of each difficulty (from 17 to 34 initial hints). For train-
ing samples, all labels corresponding to an input hint image
are masked in the ground-truth sequence y. Thus, between
17 and 34 variables are masked for each solution.

Neural architecture. To recognize hand-written digits, we
add an untrained convolutional neural network (CNN, the
same as in [Wang et al., 2019]) to our previous architecture.
The logits predicted by the CNN are negated and interpreted
as a unary cost function on each variable Yi with a hint. The

GM produced by N(ω) comprises the pairwise cost functions
predicted by the ResMLP (as before) and the unary cost func-
tions. In order to compute the E-NPLL, missing labels in y
are imputed by solving the predicted GM – only on unob-
served variables – using the exact solver toulbar2 [Hurley et
al., 2016]. Finally, the regularized E-NPLL is computed over
the completed solution and back-propagated. During the first
epochs, the predicted rules are mostly random, making the
imputation long. Therefore, we first restrict training to grids
with few initial hints: only 17 on first epoch, then less than 20
on the second, 30 on the third and so on until all training grids
are included. In average, imputation takes 0.05s per Sudoku
grid. Finally, we divide the learning rate of both neural nets
by 10 at epochs 6 and 8 (out of 20).
Test. We compare our architecture with the two meth-
ods [Yang et al., 2023; Li et al., 2023a] applying ground-
ing to the RRN dataset as they outperformed other competi-
tors [Topan et al., 2021; Wang et al., 2023] on the simpler
SATNet dataset. After visual Sudoku training, we assessed
the accuracy of the CNN alone on MNIST digits, the percent-
age of correctly-filled grids when no correction of MNIST
classification is allowed, and the final percentage of correct
grids with corrections by the solver. We only compare meth-
ods tackling the ungrounded problem, where no label is avail-
able for hints. The resulting perception architecture is not
as accurate as competitors, with a 1% lower accuracy, lead-
ing to far fewer properly filled grids. Yet, the Sudoku rules
are learnt properly, enabling the solver to correct 20% of the
grids eventually reaching a competitive 93.3% of visual grids
solved, with a training time reduced by 32%.

6 Conclusion
Symbol grounding, or the ability to map visual inputs to sym-
bols, is a crucial ability for neurosymbolic architectures to
progress towards AGI. We build upon such an architecture,
that relies on discrete graphical models and the E-NPLL for
training [Defresne et al., 2023], and propose a data imputa-
tion scheme to enable it to tackle symbol grounding prob-
lems, where some variables are unobserved. We show on
the Sudoku benchmark that this hybrid architecture is still
the most time-and-data efficient while being interpretable in
terms of rules learnt. With the data imputation, our approach
is competitive on the grounded Visual Sudoku while faster.

For the data imputation, we used an exact solver, which
can be time-consuming if many variables are unobserved.
Heuristic or approximate solvers [Durante et al., 2022] could
be used instead, with multiple imputations [Little and Rubin,
2019] if necessary.
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