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Learning how to reason

671483925953…

Solution

MADTRPERRFTRID… 

Observed

Optimization 
process

▶ Observation: natural & structured objects

▶ Result from an optimization process → aim to re-purpose it
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Learning how to reason

671483925953…

Discrete reasoning problem:
- Constraints 

rules
- Criteria

costs, energies, …
→ Satisfy the constraints, minimize 
the criteria 

Conditions

Not observed

Solve

Solution

MADTRPERRFTRID… 

Observed

SAT, CSP, CFN, MRF, … 

▶ Goal: solve new instances with no access to the discrete model parameters
> Learn to predict the underlying constraints & criteria
> Decision-focused learning

▶ How? By interfacing two branches of AI:
> Deep Learning (DL)
> Discrete reasoning (CFN)
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Zoom on the Sudoku toy problem

▶ Sudoku as a pairwise Graphical Model
> One variable Xi per cell
> Domain Di = 9 digits
> Cost functions = rules cij : Di × Dj → R+ ∪ {∞}

▶ Joint cost C (·): sum of all cost functions

> Cost Function Network (CFN)
> Probability distribution: P(s) ∝ exp(−C (s))

▶ Solving a grid: s∗ = argmins C (s) = argmaxs P(s)
> NP-hard, solved by toulbar2 [6]

What if the rules are unknown? → Learn from examples [2]

p. 4



Zoom on the Sudoku toy problem

▶ Sudoku as a pairwise Graphical Model
> One variable Xi per cell
> Domain Di = 9 digits
> Cost functions = rules cij : Di × Dj → R+ ∪ {∞}

▶ Joint cost C (·): sum of all cost functions

> Cost Function Network (CFN)
> Probability distribution: P(s) ∝ exp(−C (s))

▶ Solving a grid: s∗ = argmins C (s) = argmaxs P(s)
> NP-hard, solved by toulbar2 [6]

What if the rules are unknown? → Learn from examples [2]

p. 4



Learning how to play Sudoku

▶ Aim: learning a representation of the Sudoku rules
> Data: (initial grid, solved grid)
> Rules (cost functions) are unknown

Cost 
functions

    {(xi , yi, 
      xj , yj)}

9x9i

j

Neural Net
Learns the rules

Discrete solver
Solves the problem

Hybrid encoder-decoder architecture

Aiming to minimize the decision error

L = Hamming(y , ŷ) =
1

81

81∑
i=1

1[yi ̸= ŷi ]

> Issue: discrete objective vs gradient descent → ∇L is 0 or non-existant

> Repeated NP-hard solve calls → no scalability
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2-stage approach with the Emmental-PLL (E-PLL) [4]

Scaling: no solver during training

▶ How to assess the learned discrete problem without solving it?

> Log likelihood (log-probability of the training set) Intractable (#P)
> Pseudo-log likelihood [1]: −

∑
i log P(yi |y−i )

0% grid solved

ResMLP

ResMLP

9x9

9x9

CFN Probability 
distribution PLL

Backpropagation

Cost 
functions

P(x) ∝ e-cost(x)

▶ PLL enhanced to learn constraints [4], E-PLL: −
∑

i log P(yi |y−(i∪M(i)))

3Marianne Defresne, Sophie Barbe, and Thomas Schiex. “Scalable Coupling of Deep Learning with Logical Reasoning”. In: Thirty-second
International Joint Conference on Artificial Intelligence, IJCAI’2023. 2023
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Many approaches for learning how to play Sudoku

Type Approach Acc. #given Train set Train time (h)

DL RRN NeurIPS18[8] 96.6% 17 180,000 >50
Rec. Trans. ICLR23[13] 96.7% 17 180,000 >50
DDPM ICLR25[14] 99.2–100% 33.8 100,000 13.6
DDPM 0.2% 17 - -

Relax+DL SATNet ICML19[12] 95.1–99.8% 36.2 9,000 2.9
SATNet 86.1–86.2% 17 - -

CO+ML GM/APLL CP2020[2] 100% 17 9,000 1.5

CO+DL Hinge IJCAI23[4] 100% 17 1,000 >50
E-NPLL IJCAI23[4] 100% 17 100 0.05

▶ E-PLL is exact, data-efficient and scales to large instances

p. 7



Learning to play Visual Sudoku

Visual sudoku: Learn symbols and rules simultaneously

LeNet

ResMLP 9x9

Binary cost 
functions

Unary cost 
functions

CFN Probability 
distribution E-PLL

Backpropagation

P(x) ∝ e-cost(x)9

▶ Cheating! Direct supervision of the digit

> Symbol grounding problem: learning the mapping image 7→ symbols
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Symbol grounding problem

Visual sudoku: Learn symbols and rules simultaneously

LeNet

ResMLP 9x9

Binary cost 
functions

Unary cost 
functions

CFN Probability 
distribution E-PLL

Backpropagation

P(x) ∝ e-cost(x)9

▶ Mask hints from solutions in train set [3]

▶ Issue: computing the E-PLL requires a complete assignment
▶ Our solution: data imputation

> Solve predicted CFN to infer missing variables
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Symbol grounding problem

Visual sudoku: Learn symbols and rules simultaneously

LeNet

ResMLP 9x9

Binary cost 
functions

Unary cost 
functions

CFN Probability 
distribution E-PLL

Backpropagation

P(x) ∝ e-cost(x)9

▶ Solver able to correct digit mis-classification

Approach Solved Training (h)

Rec. Trans. ICLR23[13] 75.6% 5.1
NeSy. Prog. NeurIPS23[7] 92.2–94.4% 4.7
E-PLL IJCAI23[4] 93.4% 3.2
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Learning to reason on real-world problems

Key properties of learning CFN with Emmental PLL

> Contextual optimization

> Scales to large instances

> A posteriori control (adding constraints or criteria)

Real-world applications

▶ Preference acquisition & car configuration [2]

▶ Estimating gene regulation networks [10]

▶ Learning the laws of protein design
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Application to a real-world problem

Learning the laws of protein design

Cost function = pairwise interaction score [11]

> Main challenges:

o Train set up to 10,000 variables, variable size
o Varying context = input structure
o Observe one of many possible solutions

> Intractable inference → use an approximate solver [5]

> Outperforms existing decomposable score functions

Rosetta [9] Our

Similarity (↑) 17.9% 33.0% Experimentally validated
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Annex: Details on the Hinge loss

L(y, y∗) = Hamming(y, y∗) =
n∑

i=1

α1[yi ̸= y∗
i ] with α ∈ R∗

+

Hinge(ω, y) = max
t∈DY

[L(y, t) + (N(ω)(y)− N(ω)(t))]

For a pairwise-decomposable loss L, the Hinge loss becomes:

Hinge(ω, y) = N(ω)(y)− min
t∈DY

[N(ω)(t)− L(y, t)]︸ ︷︷ ︸
arg min=ym
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